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GPU performance and power tuning is difficult, requiring extensive user expertise and time-consuming trial
and error. To accelerate design tuning, statistical design space exploration methods have been proposed.
This article presents Starchart, a novel design space partitioning tool that uses regression trees to approach
GPU tuning problems. Improving on prior work, Starchart offers more automation in identifying key design
trade-offs and models design subspaces with distinctly different behaviors. Starchart achieves good model
accuracy using very few random samples: less than 0.3% of a given design space; iterative sampling can
more quickly target subspaces of interest.
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1. INTRODUCTION

As a popular heterogeneous computing paradigm, CPU-GPU pairs offer high perfor-
mance and power efficiency for suitable workloads. However, careful performance and
power tuning is essential for fully utilizing GPU capabilities. This is because poor GPU
software and hardware design choices often have severe consequences. For example,
the performance of Section 2’s example kernel can differ by 100× depending on the
value of a single program parameter. Clearly, finding the “right” parameter settings
can be very beneficial; the key is to do this design space exploration efficiently.

Traditionally, a GPU software or hardware design space is explored manually, relying
on the intuition and experience of the people doing the exploration to navigate the space
[Datta et al. 2008; Li et al. 2009; Choi et al. 2010; Dotsenko et al. 2011; Torres and
Gonzales-Escribano 2011; NVIDIA 2011, 2014c]. However, such intuition is difficult
to establish in the GPU realm due to numerous challenges, such as complex memory
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hierarchies [NVIDIA 2009, 2012], runtime hardware settings (Section 8.3), and subtle
software–hardware interactions [Jia et al. 2012]. These challenges make GPU design
spaces especially unfamiliar and complex, making traditional, human intuition–based
tuning techniques likely to miss important parts of a given space.

In the past, automated tuning tools have been proposed to replace or complement
manual design space exploration. Among them, some linear regression–based ap-
proaches have been particularly simple and effective [Lee and Brooks 2006; Joseph
et al. 2006; Jia et al. 2012]. However, the use of linear regression means that these
methods can only evaluate parameter importance globally across the entire design
space rather than locally within particular subregions. This severely limits their ap-
plicability and accuracy for complex design spaces (Section 7.2).

This article proposes Starchart, a fully automated, regression tree–based design tun-
ing tool. Starchart uses a small set of design samples to recursively partition a given
design space at key inflection points of a design parameter values, capturing a pa-
rameter’s global performance and power impact as well as its local influence within
design subspaces. Due to its ability to model design subspaces, Starchart can model
highly complex, real-system software tuning spaces that prior linear regression–based
methods cannot model well. In addition, the subspace modeling ability lets Starchart
automate some important design tasks by representing them as decision trees; Sec-
tion 8 demonstrates how to use Starchart in various realistic design scenarios.

We evaluate Starchart using two sampling approaches. In Baseline Starchart, ran-
dom sampling is used to collect design samples. Only a small portion of a design space
(less than 0.3%) needs to be sampled to achieve median prediction errors of 4% to 8%,
resulting in a 300× or more tuning productivity improvement. In Iterative Starchart,
a more intelligent, iterative sampling approach is proposed and evaluated. It improves
accuracy within design space regions of interest by 21% relative to Baseline Starchart.

Overall, this work makes the following contributions:

(1) Starchart’s novel partitioning tree approach provides accurate performance or
power estimates for complex GPU design spaces, especially for real-system soft-
ware tuning spaces that have proven challenging to prior linear regression-based
methods.

(2) We present an iterative sampling approach that can automatically sample more
designs from design space regions that are of particular interest to the user. This
improves modeling accuracy and efficiency for these regions under a limited sam-
pling budget.

(3) We present case studies that offer useful GPU insights as well as demonstrate how
to use Starchart to automate design tasks.

(4) Although Starchart is evaluated using GPU software tuning problems in this arti-
cle, it is general enough to handle non-GPU and hardware tuning problems.1

In the rest of the article, Section 2 motivates the use of regression trees. Section 3
reviews prior work. Section 4 presents Baseline Starchart, and Section 5 presents
Iterative Starchart. Then, using Section 6’s methodology, Section 7 evaluates Baseline
and Iterative Starchart. Section 8 offers case studies. Section 9 concludes the article.

2. MOTIVATION: DESIGN SPACE PARTITIONING

To motivate our work, we present a walk-through example based on the swap kernel
in the kmeans program from the Rodinia benchmark suite, using data collected via
real-system measurements on the AMD platform described in Section 6.

Figure 1 shows the kernel code, with parameterizations added to allow possible
optimizations. (This code template approach is often used by autotuning tools.) The

1Starchart is released under an open-source license at http://www.princeton.edu/∼mrm/ for public use.
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Fig. 1. Parameterized code of the swap kernel from Rodinia’s kmeans.

Fig. 2. For the swap kernel in kmeans, ppb is an important performance lever for the original kernel. Higher
tpp improves performance while reducing ppb’s influence. consec also affects performance, but only for
smaller tpp values.

code transposes an array F of M multidimensional points, each having N features, into
an array Ft of N lists, each having M features. Key optimization parameters include
(1) tpp, the number of parallel threads per point; (2) ppb, the number of points per
block; and (3) consec, a binary flag controlling thread organization and memory access
striding. When consec is 1, all threads in a block issue consecutive and coalesced
accesses while executing the same instruction.

Even in this example with only three parameters, poor parameter settings can lead
to 100× performance penalties. However, finding good parameter settings is difficult
because the parameters interact in complex ways to affect parallelism, memory coa-
lescing, and—ultimately—performance. For example, tpp and ppb represent orthogo-
nal forms of parallelism, but their product is limited by the maximum thread count of
the GPU platform. Without automation, design space exploration must either require
near-exhaustive experimentation or rely on the error-prone manual tuning process.

To begin the example, Figure 2(a) plots the kernel runtime for varying ppb values,
with tpp and consec set to 1. (This is the default Rodinia code.) If tpp must remain as 1
(e.g., to simplify code), then Figure 2(a) shows that selecting a good value of ppbmatters.
A ppb of 8 performs nearly 6× better than other options. However, Figure 2(b) shows
that tpp > 1 is usually better. When tpp can take values higher than 1 (indicating that
some threads-per-point parallelism is being exploited), the runtimes are consistently
faster than those in Figure 2(a). Furthermore, for larger tpp values, runtime varies very
little with increasing ppb, indicating that ppb is not the preferred form of parallelism

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 13, Publication date: May 2015.



13:4 W. Jia et al.

Fig. 3. Design space partitions represented as a tree efficiently summarize performance trends.

in these situations. Finally, Figure 2(b) also shows that although the consec parameter
does affect performance, this is primarily for small tpp values.

Clearly, even what seems to be a fairly simple three-parameter tuning space displays
considerable subtlety. Parallelism and memory striding parameters interact differently
in different parts of the tuning space. Our work proposes and evaluates automated sta-
tistical techniques to determine the relative importance of parameters both globally
across the entire design space and locally in particular subspaces. The ability to cap-
ture parameters’ local interactions makes Starchart more powerful and useful than
regression-based approaches.

Figure 3 illustrates a regression tree automatically generated by Starchart for this
kernel. Each tree branch divides the design space where a particular parameter value
has been shown to be an important determinant for program performance (or any
other metric). The topmost branch point indicates the most important parameter value.
Each subsequent level of the tree shows the next most important parameter decision,
contingent on the ones above it. Furthermore, each rectangle gives the number of
experimental sample points in that particular design space partition and their average
performance. Reading the automatically generated tree, a GPU application developer
or tuning tool can identify which parameters are most influential on a given metric and
can see when parameters may be important within a local subregion of the tuning space.
In contrast, existing approaches would not distinguish between the different consec
values when 1 < tpp ≤ 8, because tpp > 8 is the optimal global solution and consec is
irrelevant under that subspace. Furthermore, Starchart can easily capture and express
arbitrarily high levels of interactions (e.g., the three-way interaction between tpp, ppb,
and consec) simply by adding levels to the tree. Existing linear regression techniques
only consider either manually specified parameter interactions [Lee and Brooks 2006]
or just pairwise interactions [Jia et al. 2012].

3. RELATED WORK

Specialized GPU autotuning frameworks exist for specific algorithms [Datta et al.
2008; Li et al. 2009; Choi et al. 2010; Dotsenko et al. 2011]. However, they tend to focus
more on identifying and presenting key algorithmic choices than on automatically
pruning them. Considerable user experience or exhaustive experimentation is often
needed to search the resulting design spaces. In contrast, Starchart can automatically
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detect the important design parameters and their interactions among a large number
of unpruned parameters, easing the creation of a new autotuner. Meanwhile, Starchart
can also replace or aid the heuristic search algorithms used in several more general
autotuning frameworks [Fursin and Temam 2010; Ansel et al. 2014].

Various automation methods have been proposed to search and navigate software
tuning spaces, such as CPU kernel genetic tuning [Moilanen and Williams 2005], com-
piler optimization pruning [Triantafyllis et al. 2003], and optimal GPU code searching
[Bergstra et al. 2012; Ganapathi et al. 2009]. They differ from Starchart in several
aspects. First, in terms of problem specification, Starchart builds application-specific
performance and power models, whereas some existing work only assesses compiler op-
timizations common across all applications [Triantafyllis et al. 2003]. Second, in terms
of scope, Starchart is validated for multiple applications on two GPU platforms using
both performance and power as metrics, whereas some existing work is evaluated only
for one particular application [Bergstra et al. 2012; Ganapathi et al. 2009]. Finally, and
perhaps most importantly, prior machine learning–based work mostly aims to find the
globally optimal program configuration [Moilanen and Williams 2005; Bergstra et al.
2012; Ganapathi et al. 2009]. In contrast, because statistical models are generally more
transparent and easier to interpret than machine learning models, Starchart not only
finds the global optimum but also reveals local optima, parameter interactions, and
performance trends. In other words, Starchart offers more useful design information
to its users than conventional optimal design search algorithms can.

Due to the simplicity and effectiveness of statistical methods, linear regression has
become the core of several design space exploration tools [Lee and Brooks 2006; Joseph
et al. 2006; Jia et al. 2012]. However, the use of linear regression in these tools means
that they cannot distinguish a parameter’s effects in local regions of a design space.
This not only severely reduces their modeling accuracy for complex design spaces, as
shown in Section 7.2, but also prevents them from being used to handle many useful
subspace-based design problems, such as the Starchart case studies in Section 8. One
study [Magni et al. 2013] uses a similar regression tree approach as Starchart, but it
deals with a specific program optimization—thread coarsening—instead of proposing
a general tuning framework like Starchart does.

Other GPU performance models (e.g., those based on program analysis [Ryoo et al.
2008; Hong and Kim 2009; Sim et al. 2012]) and power models (e.g., those based on
performance counters [Nagasaka et al. 2010; Chen et al. 2011]) exist. The former
usually impose strong limits on the types of programs that can be analyzed and are
difficult to automate. The latter can be used as the power measurement component of
our framework when real-system power measurements are physically infeasible.

Formally, our algorithm builds a type of decision tree [Kutner et al. 2005], which
is studied extensively in statistics and machine learning fields. Some current studies
[Loh 2008] improve on the classic method we use. They can be easily applied to our
core algorithm to improve its accuracy, efficiency, or both.

4. STARCHART: AUTOMATED DESIGN SPACE PARTITIONING

This section describes the various steps in the Starchart workflow.

4.1. Design Sample Collection

Parameter selection. To use Starchart on an application, a set of parameters that define
the dimensions of the tuning space must first be identified. Parameters may relate
to software (e.g., blocking factor, thread count) or to hardware (e.g., active core count,
system clock rates). Parameters can either be binary in nature (e.g., whether to turn on
or off an optimization) or can take numeric values across a possible range. Parameters
can even be choices, such as including “NVIDIA vs. AMD” as a design option [Jia et al.
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2013]. Because statistical partitioning is effective at automatically pruning design
spaces and identifying interesting subspaces, one can be generous in including any
tuning parameters that may matter.

Sampling program designs. In traditional autotuning, a designer or programmer
might run evaluations for a large number of possible points within the fully enumer-
ated set of design possibilities. Exhaustively evaluating all design points is rare and
time consuming. The other common technique—selecting a “center point” design and
evaluating a range of parameter settings around it—relies heavily on designer intu-
ition and may miss promising regions of the design space. In contrast to exhaustive
or center-point–based explorations, our baseline approach uses as input only a modest
set of designs sampled from the space uniformly at random (UAR). Section 7.1 shows
that less than 0.3% of all possible designs are needed to accurately characterize the
whole space, resulting in a more than 300× productivity improvement. In some design
scenarios, we are more interested in particular parts of a given design space, such as
the best performance or lowest power usage regions. We may wish to sample more from
these regions to get a higher model accuracy in these regions. Section 5 describes an
iterative sampling approach that can achieve this goal.

Evaluations. Each randomly selected sample point represents a specific design that
must be evaluated. This could be either performance or power measurements, and
it could be either real-system measurements or simulation. In this work, we use
real-system power and performance measurements (Section 6). Thus, the input to
Starchart’s partitioning algorithm is a set of UAR sampled design points (i.e., their
parameter settings) and the resulting performance or power measurements.

4.2. Automated Partitioning Algorithm

Algorithm 1 shows the pseudocode for Starchart’s design space exploration algorithm.
Its partitioning algorithm seeks to determine which of the many parameters, Pi,
strongly influence a metric such as performance and to determine how these different
parameters interact with one another. As input, Starchart takes a list of all possible
value settings, Vi, for each parameter, Pi, as well as a set of randomly generated design
samples whose performance has been measured. In this section, we use performance
as an example metric; other metrics, such as power, can be modeled similarly.

Developing intuition about relative parameter importance requires analyzing how
performance changes with respect to values of this particular parameter. We can do this
by setting a threshold value for a parameter, dividing the sample set into two groups
based on each sample’s value for the specified parameter relative to the threshold
value, and then comparing and contrasting the groups to each other. For example, in
Figure 3, we can divide the initial sample space based on whether the parameter tpp
is equal to 1 or not, resulting in sample subsets with 18 and 52 samples, respectively.

The goal for this subdivision is to find split points where the samples in the two
subsets fall into distinct, mostly nonoverlapping groups. If two distinct subsets exist,
this implies that this parameter setting clearly influences performance; otherwise,
the parameter setting does not have a clear influence on performance. Starchart uses
the sum of squared errors (SSE), which is the sum of squared differences between
performance of samples in a set and the average performance of all samples in the set,
to compare splits, as explained later, although other metrics could be used as well.

In Figure 3, we see that the subdivision of the original set creates two subsets
with widely disparate mean runtimes: 5.8ms versus 0.76ms. Clearly, the tpp setting
can strongly influence performance. However, to ensure that these two numbers do a
better job describing the samples than the average of the entire set, we compare the
SSE of the initial samples to the combined SSE values of the two subsets. If the initial
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ALGORITHM 1: Recursively partition a program design space. The metric here is perfor-
mance; power can be modeled similarly.

input: D: design space specified with n design parameters P1, P2, . . . , Pn
input: Vi : set of values that may be taken by each parameter Pi
input: Set S composed of m sampled designs in the space, s1, s2, . . . , sm, with their parameter values

known and resulting performance, r1, r2, . . . , rm, measured

1 List of pending partitions C = {S};
2 Partitioning history H = {};
3 repeat
4 foreach partition c in C do
5 r̄ = the average performance of all points sj in c;
6 r̄ is used as the modeled performance of all points in c;
7 rj is the performance of sj ;
8 sum of squared errors SSE0 = ∑

j (rj − r̄)2;
9 forall the parameter Pk do

10 forall the possible parameter value vl in Vk do
11 split c into two partitions c1 and c2;
12 c1 has the samples from c with Pk ≤ vl;
13 c2 has the samples from c with Pk > vl;
14 r̄1 = the average performance of points in c1;
15 r̄2 = the average performance of points in c2;
16 SSE1 = ∑

j (rj − r̄1)2 for sj ∈ c1;
17 SSE2 = ∑

j (rj − r̄2)2 for sj ∈ c2;
18 SSE12 = SSE1 + SSE2;
19 end
20 end
21 remove c from C;
22 find the smallest SSE12 across all (Pk, vl) pairs;
23 SSEmin = this smallest SSE12;
24 (Pmin, vmin) = the param-value pair that produces SSEmin;
25 SSE0 − SSEmin is the reduction in error;
26 if SSE0 − SSEmin > threshold then
27 split c into two partitions cl and ch;
28 cl has the samples from c with Pmin ≤ vmin;
29 ch has the samples from c with Pmin > vmin;
30 add cl and ch to C;
31 add ((Pmin, vmin), (c, cl, ch)) to H as part of the final tree;
32 end
33 end
34 until C is empty;

output: Partitioning history stored in H represented as a tree

set’s SSE is larger than the sum of the SSEs of the subsets, we can conclude that this
parameter value is a good distinguisher of performance.

As shown in Algorithm 1, Starchart tentatively divides the initial sample space
into two groups for every possible parameter value setting. For each chosen parameter
setting, it calculates the average value and sum of the SSEs for each of the two tentative
sample subsets created (lines 9 through 20). It then sorts all of the different sample
splitting choices by the sum of SSEs of their respective subsets. The parameter setting
that results in the smallest sum of the SSEs divides the initial sample into the most
distinct and internally similar subsets. In other words, the choice of this parameter
setting creates the greatest distinction in performance and therefore has the highest
impact on performance. Starchart thus splits the initial set based on this parameter
setting as long as the reduction in error is greater than some threshold value (lines 21
through 32).
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After the split of the initial set into two distinct subsets, each of the two sets may still
have samples that vary greatly internally. Consequently, Starchart recursively applies
its algorithm to each of the two subsets, which results in a total of four subsets. Further
precision can be gained by continuing to apply Starchart to these four subsets and so
on until the appropriate level of error is reached (lines 3 through 34).

Starchart’s end product is a tree where nodes are design space partitions, and the
edges out of them specify the value ranges for a particular parameter in each of the two
subtrees. These trees have two key characteristics. First, parameter splits highest in
the tree have the highest overall influence on performance. This is because Starchart
greedily orders splits based on parameter values that reduce SSE the most. Second, for
each partitioned subspace, independent choices can be made regarding subsequent fur-
ther partitions. This is key; it means that we can find parameters of crucial importance
within a particular subregion, even if they are only of modest global importance across
the full design space. The ability to find key parameters within a subregion is central
to the technique’s efficacy and differentiates it from prior work that only recognizes
globally important parameters [Lee and Brooks 2006; Jia et al. 2012].

4.3. Algorithm Options

Tree node models. We use average and SSE values in each tree node in our implemen-
tation of Starchart because they are easy to compute, have clear meanings, and are
widely used in traditional regression tree theories. However, different models can be
used. For example, we could use linear regression models such as those in Stargazer
[Jia et al. 2012] inside each tree node. Because these models are more descriptive than
a simple average value, we might expect fewer tree levels before SSE stops reducing.
However, these models are also much more computationally expensive to build. Ex-
ploring the trade-offs between different tree models in terms of accuracy and efficiency
could be an interesting study in future work.

Stopping criteria. In Algorithm 1, splitting might continue until there is only one
point per set. This level of detail is rarely necessary. We set the threshold value to 0
for performance trees, meaning that we stop splitting a partition when further splits
do not improve the tree’s capability to distinguish designs. This has a clear physical
meaning: when a partition stops being split, it means that the natural variation in
samples in this partition cannot be attributed to any particular parameter’s choice of
value. For power trees, we set threshold to 3W, the instrument error, as explained in
Section 6.

In our experiments, 200 samples result in 40 to 50 final partitions with the preced-
ing stopping criterion. Section 7.1 shows this offers good model accuracy. Meanwhile,
because parameters are ranked by importance top-down in the tree, users do not need
to read or understand all of those splits. They can focus on the top or the subtrees of
greatest interest. Other stopping criteria are also possible to further limit tree height.
For example, we can put a limit on the maximum height of the tree, or we can stop
splitting a partition when its data variance is below some threshold.

5. AN ITERATIVE STARCHART APPROACH

The UAR sampling used in the Baseline Starchart algorithm described so far is easy
to implement and ensures good coverage of the whole design space. However, in many
practical GPU tuning problems, depending on their design goals, users are often more
interested in some parts of a design space than in other parts. With this in mind, this
section answers the following question: under a limited sampling “budget,” can we
modify the Baseline Starchart algorithm to specifically emphasize regions of interest
without sacrificing model accuracy over the whole design space?
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Fig. 4. For swap in kmeans, the part of the design space with higher tpp values (× symbols) contains designs
with lower runtimes and thus deserves more samples.

5.1. Motivation: Focusing on Areas of Interest

The bulk of time required to use Starchart is devoted to gathering performance (or
power) data for the sample points. Therefore, when certain regions in a design space
are of more interest to a designer, the designer may want to make the best use of a
limited sampling budget to improve prediction accuracy for those regions. (Whereas we
define regions of interest as the best-performing regions in the rest of the article, many
other criteria can be used, such as lowest power usage, performance-power Pareto
frontiers, etc.) In the rest of this section, the same kernel from Section 2 is used to
explain how an iterative sampling approach can help to achieve this goal.

Figure 4 shows how tpp and ppb values determine this kernel’s performance (z-axis)
for 100 UAR samples. (The parameter consec can take either 0 or 1, not distinguished
in the figure.) The performance trends revealed in Section 2 are more clearly visualized
in Figure 4: high tpp values generally result in designs with lower runtimes. Hence,
if the goal is to find high-performance kmeans designs, a designer may want to focus
on detailed parameter choices in the region of the design space with high tpp values—
shown as the part occupied by “×” symbols in Figure 4. This can be accomplished by
assigning more of the sampling budget to that region.

We use an iterative sampling approach to achieve such emphasis. In other words,
after an initial sampling round that gives us information about the locations of the
regions of interest, we strategically take more samples from those regions in a second
sampling round. In Figure 4, this means that we will sample more points from the high
tpp region. Then, samples from both rounds are used together to build a Starchart
tree. Because first-round samples, which cover the entire design space, are still used in
the tree-building process, the generated tree maintains good accuracy over the whole
space.

Note that our goal is to include more high-performance samples in our model without
increasing total sample counts. This differs from many existing approaches, such as
some active learning methods [Settles 2010], which increase sample counts to improve
model accuracy. The next section describes our iterative sampling approach in detail.

5.2. The Iterative Starchart Algorithm

From here on, Baseline Starchart refers to the Starchart algorithm with the default
UAR sampling approach described in Algorithm 1, and Iterative Starchart refers to the
modified algorithm with iterative sampling.

As mentioned in Section 4, the input to Baseline Starchart’s regression analysis is
a small sampled set of possible designs from the parameter space. This set is sampled
UAR from the global parameter space and constitutes at most 0.3% of the design space
(Section 7.1). In Iterative Starchart, we explore the possibility of devoting fewer of the
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“budget” of sample points to the regions of the design space that are far from optimal.
Since gathering runtime data for each sampled point is the most time-consuming part
of Starchart, this allows the tool to focus its time on the most interesting parts of the
design space.

Rather than using a single level of UAR sampling to collect samples for the regression
analysis, Iterative Starchart performs a preliminary phase that identifies a “region of
interest.” Then, additional design samples from that region are collected. We then per-
form regression analysis and create the Starchart tree with the additional points along
with points initially sampled UAR (to maintain good global performance prediction for
the entire space). Algorithm 2 shows the workflow of Iterative Starchart. Note that in
Algorithm 2, the iterative sampling technique (lines 1 through 4) selects the points to
be used as the input S to Algorithm 1 on line 5.

ALGORITHM 2: Create a refined Starchart training set using an iterative sampling method.
input: D, a design space specified with n design parameters P1, P2, . . . , Pn
input: Vi , the set of values that parameter Pi may take
input: I, the number of points to sample in the first round to form the initial sample set SI
input: t, the percentage of best-performing points taken from SI to form a bounding box
input: A, the number of points to sample in the second round to form the additional sample

set SA

1 Sample I designs from D UAR and label the set SI ;
2 Sort designs in SI by decreasing performance and take the top t% of these designs to form

set St (St ⊆ SI);
3 Create a bounding box, B, by tracking the upper and lower limits of values seen for each

parameter, Pi, across all samples in St;
4 Sample additional A designs from D such that these designs fall within B and form a set SA;
5 Run Algorithm 1 with SI ∪ SA as its input sample set S.

output: a Starchart tree that emphasizes the region of interest while having acceptable
overall accuracy

Algorithm 2 starts with I designs sampled UAR, forming a set SI . The algorithm
then sorts these points by the metric of interest (e.g., runtime) and selects the top t%
of these points to form a set St. This cutoff value t can be made more or less selective
depending on the degree of emphasis that we seek. The algorithm defines a specific
region of interest by analyzing these top t% designs. In particular, it identifies the
minimum and maximum values seen for each parameter, Pi, across all designs in St.
These upper and lower limits of all n parameters form an enclosed n-dimensional area
(i.e., a bounding box B) around points in St. B contains samples that perform well under
our chosen metric of interest, and we proceed to sample Aadditional points from D that
fall within B and form a sample set SA. SA reflects our guided sampling emphasis on a
region of interest, whereas SI ensures our global sample coverage. Finally, the union
of SI and SA are fed into Algorithm 1 as its input sample set S to train an Iterative
Starchart tree.

6. METHODOLOGY

The methodology described in this section is used for all results in Section 7.
Benchmarks studied. As shown in Table I, we use six GPU kernels from the Rodinia

suite [Che et al. 2009] and NVIDIA GPU SDK [NVIDIA 2014a]. The kernels exhibit
diverse behavior and use various GPU functional units. For each kernel, relevant
design parameters are substituted by C macros so that our design sampler can easily
modify them and generate appropriate code. Some of these parameters already exist in
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Table I. Configurable GPU Kernel Software Parameters Common on Both NVIDIA and AMD Platforms

Kernel Parameter Value Category Comment

bfs

block 32–1024 Thread block size Num of threads in each thread block
npt 1–64 Work allocation Num of nodes processed by each thread

consec 0/1 Coalescing Each thread processes consecutive nodes?
pa-attrib 0/1 Data layout Store node attributes in parallel arrays?
pa-status 0/1 Data layout Store node status flags in parallel arrays?

hotspot

x 1–1024 Thread block size X dimension size of each thread block
y 1–1024 Thread block size Y dimension size of each thread block

t-temp 0/1 Data layout Transpose temperature array in shared mem?
t-power 0/1 Data layout Transpose power array in shared mem?
t-buffer 0/1 Data layout Transpose buffer array in shared mem?

kmeans

ppb 32–1024 Thread block size Num of points processed by each thread block
tpp 1–32 Work allocation Num of threads cooperating on each point

consec 0/1 Coalescing Neighbor threads process consecutive features?

matrix

x 1–1024 Thread block size X dimension size of each thread block
y 1–1024 Thread block size Y dimension size of each thread block

tiling 1–1024 Work allocation Num of elements processed by one thread
unroll 1–16 Compiler option Degree of unrolling of innermost loop
t-a 0/1 Data layout Transpose A array in shared mem?
t-b 0/1 Data layout Transpose B array in shared mem?

use-smem 0/1 Shared memory Buffer matrix tiles in shared mem?

nbody

x 1–1024 Thread block size X dimension size of each thread block
y 1–1024 Thread block size Y dimension size of each thread block

unroll 1–8 Compiler option Degree of unrolling of innermost loop
n 1024–32768 Input size Num of bodies in the input data

stream-cluster

block 32–1024 Thread block size Num of threads in each thread block
ppt 1–16 Work allocation Num of points processed by each thread

pa-point 0/1 Data layout Store point structures in parallel arrays?
use-smem 0/1 Shared memory Buffer point structures in shared mem?

Note: The listed value ranges are the union of both platforms.

Table II. Hardware Parameters and Values Available Only on the NVIDIA Platform

Parameter Value Comment
nreg 4–32 The maximum number of registers each thread can use before register spilling

use-l1 0/1 Whether to enable L1 caches
large-l1 0/1 Whether to use 48KB L1 caches and 16KB shared memory (vs. 16KB L1 caches

and 48KB shared memory)

the kernels; others are our own addition to explore further optimizations. The size (i.e.,
the total number of possible program designs) of each design space and the measured
runtime distributions of sampled designs are shown later in Table III. (When a UAR-
sampled configuration cannot be run on a particular platform, it is not counted in the
sample set.) Every kernel is run on two platforms. The NVIDIA platform runs CUDA
versions of the programs, and the AMD platform runs OpenCL versions, but they
differ only syntactically. Because NVIDIA and AMD platforms have various differences
(thread block size limit, shared memory size, etc.), the parameter values listed in
Table I are the union of all possible values on both platforms. For example, in actual
experiments, the block parameter of bfs starts at 32 on the NVIDIA platform and 64
on the AMD platform, but Table I lists the start value as 32 for simplicity. For every
benchmark, either block or x×y indicates the total number of threads per thread block.
Finally, three parameters are available only for NVIDIA, listed in Table II.
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Table III. Design Space Sizes and the Runtime Distributions of Designs Sampled
from these Spaces (in Milliseconds)

Benchmark Design Space Size Min 1st Qt. Mean 3rd Qt. Max
bfs-amd 131K 0.51 0.59 0.89 1.22 1.54

bfs-nvidia 1.84M 1.08 1.25 1.90 2.50 4.00
hotspot-amd 524K 0.31 1.71 1.74 1.81 1.94

hotspot-nvidia 67.1M 0.28 0.35 0.55 0.60 3.95
kmeans-amd 61.4K 0.046 0.12 1.99 2.69 6.31

kmeans-nvidia 1.05M 3.08 3.87 8.07 11.14 26.28
matrix-amd 75.5M 3.28 7.09 22.37 27.42 108.20

matrix-nvidia 47.2B 11.15 37.47 13.28 15.15 5756.00
nbody-amd 3.15M 0.03 0.26 6.62 4.91 204.50

nbody-nvidia 1.61B 0.06 0.61 28.51 24.41 634.00
streamcluster-amd 65.5K 0.38 0.56 1.20 1.66 3.03

streamcluster-nvidia 2.10M 0.90 1.63 4.42 6.44 24.05

Performance and power measurement platforms. We experiment on two systems:
(1) an NVIDIA Tesla C2070 GPU and (2) an AMD Radeon HD 7970 GPU. The AMD
GPU is newer than the NVIDIA GPU. Having two systems with distinct capabilities is
useful for comparison, despite disparate technologies.

To collect kernel execution times, vendor-supplied profiling tools are used [NVIDIA
2014b; AMD 2012]. The runtime experiments are run separately from the power ex-
periments. Because on a real system repeated runs of even the same kernel would
produce different measured runtimes, each kernel is executed at least 10 times and the
average execution time taken and used by Starchart. (However, even without averag-
ing, since Starchart is a statistical method, it is naturally robust against measurement
variance like this.) Only the GPU time of each kernel execution is measured and used,
excluding any CPU work, data transfer, or kernel launch overhead. When the input
size may change across different runs (bfs and matrix in Section 8.4 and nbody), the
runtimes are normalized against input size.

For real-system power measurements, we use the same methodology as Hong and
Kim [2010]: a Wattsup Pro power meter connected to a logging machine to record whole-
system power consumption at 1-second intervals. (To report GPU power alone, we
subtract baseline system power: about 100W with GPUs unplugged.) Because a kernel
usually takes only several milliseconds to execute (Table III), the GPU repeatedly
executes the same kernel in a loop, resulting in a sustained and prominent power
surge. We measure and report the power consumption level after it has stabilized over
a long period of time while the GPU keeps executing the same kernel. For each kernel,
this produces repeatable measurements within a 2 to 3 W range (about 1% of total
power). Because the power meter also has a 1.5% measurement error, we use 3W as
the stopping criterion (i.e., threshold in Algorithm 1) for Starchart power trees to avoid
growing unnecessary nodes.

7. EVALUATING THE PARTITIONING ALGORITHM

Section 7.1 presents the accuracy of Baseline Starchart. Section 7.2 compares this with
our prior work, Stargazer [Jia et al. 2012]. Sections 7.3 and 7.4 discuss algorithmic op-
timality and efficiency, respectively. Finally, Section 7.5 evaluates Iterative Starchart.

7.1. Baseline Starchart: Prediction Accuracy Versus Training Set Size

A detailed regression tree has many uses (see Sections 2 and 8), but here we use its
function as a performance predictor to demonstrate its accuracy. To use a regression
tree to predict the performance (or power) of an arbitrary design, start at the root of the
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Fig. 5. Prediction accuracy versus training set size. Users can adaptively compare against the validation
set to decide the number of training samples to collect.

tree and follow the branches based on how the parameter settings of the given design
compare to the division values. When a leaf node is reached, the average power or
performance of sampled designs in that partition is used to predict the queried design.

In statistics, validation samples are often used to decide how many sample points
are needed to build regression trees. In this method, users or tools initially select some
number of UAR samples from the design space to be considered as the validation set.
These are used to test tree accuracy and are never used in the tree-forming process. (We
use 200 validation samples in our results.) Then, a small number of separately UAR-
sampled designs are used to form an initial tree. (We use 20 samples as our starting
point.) After forming a regression tree with these samples, one can use the validation
points to test the performance prediction accuracy of the tree. If the prediction accuracy
is sufficient, the process stops. Otherwise, additional UAR samples are collected, and
the regression tree is adjusted to include them. Validation against the reserved samples
is repeated. When the prediction accuracy reaches a predetermined level, it means
that the training samples provide good coverage of the entire space, and users can stop
collecting more samples.

Figure 5 shows the median relative prediction accuracy of trees built using an in-
creasing number of training samples. Except matrix and nbody, which have the largest
design spaces, most benchmarks achieve good prediction accuracy with 200 samples:
4% error for power and 8% error for performance. To achieve a target 15% prediction
error, matrix on the NVIDIA platform needs 3,200 samples, and nbody on the AMD
platform needs 400 samples. (Even 3,200 and 400 samples are still much less than
0.1% of the size of matrix’s and nbody’s design spaces.) Among all scenarios, kmeans on
the AMD platform requires the most samples relative to its design space size: 0.3%.
Unless otherwise stated, in the rest of the article, all trees are built using these sample
sizes: 3,200 for NVIDIA-matrix’s performance, 400 for AMD-nbody’s performance, and
200 for all others. Finally, this method is highly adaptable to particular usage needs.
When only the top levels of the trees are used to interpret the most salient design
criteria for a space, fewer training and validation samples are needed.

7.2. Baseline Starchart Versus Stargazer

For this section’s comparison, both Starchart and our previous Stargazer method use
the same training and validation samples. All samples are obtained from real systems
as described in Section 6. Training and validation set sizes are described in Section 7.1.
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Fig. 6. Baseline Starchart models performance better than Stargazer for most kernels.

Previous statistical techniques [Lee and Brooks 2006; Joseph et al. 2006; Jia et al.
2012], including Stargazer, have only been applied to simulations, where the results are
highly repeatable. In contrast, both Starchart variants handle the variability of real-
system measurements. As a result, when we compare Starchart to Stargazer in terms of
performance modeling accuracy in Figure 6, the former clearly outperforms the latter.
In particular, Stargazer cannot model matrix’s and nbody’s performance with acceptable
accuracy, resulting in high median prediction errors. One exception is streamcluster
on AMD, whose design space is simple enough to be modeled by both Stargazer and
Starchart, and the former actually slightly outperforms the latter. Overall, Starchart
achieves a 9.2% median prediction error averaged over all benchmarks, which is much
lower than Stargazer’s 21.2% error.

7.3. Baseline Starchart Tree Optimality

Next, we use the following two steps to evaluate the optimality of Starchart trees—
that is, how well a Starchart tree characterizes a given design space: (1) obtain a small
sample set that has a good coverage of the entire design space and (2) evaluate how
well the Starchart tree generated by our algorithm fits the observed samples and, in
particular, whether this tree finds the “best” parameter configuration in the sample
set.

Section 7.1 has explained how we use validation sets to estimate the number of train-
ing samples needed to ensure a good coverage of the whole design space. Alternatively,
classic statistical metrics such as confidence interval estimation [Kutner et al. 2005]
can also be used to determine the desired sample count. Either way, in our experiments,
a few hundred samples are usually statistically guaranteed to cover the studied design
spaces fairly well. In particular, they are statistically likely to include designs that
perform similarly as the “best” designs for most of our benchmarks.

Given a good enough sample set, Starchart uses least squares partitions—in other
words, a split for any partition should minimize the SSE of the two subpartitions.
It has been proven that optimal least squares partitions must have contiguous ele-
ments inside each subpartition [Fisher 1958], and thus Starchart’s method of testing
N −1 possible splits for a partition with N unique numerical design parameter values,
instead of testing all 2N possibilities, is sufficient for finding a locally optimal least
squares split. Namely, the trees generated by Starchart are steepest-descent greedy
and stepwise optimal.

However, in general, these stepwise optimal trees are not globally optimal. In fact,
finding a globally optimal tree that fits observed data with the minimum least squares
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Fig. 7. Starchart achieves competitive performance compared to two R packages.

error is an NP-complete problem [Hyafil and Rivest 1976]. In practice, a greedily in-
duced tree like Starchart is reasonably good, giving classification or regression results
that are very close to those of the optimal tree [Murthy and Salzberg 1995]. To prove
this, using the validation methodology in Section 7.1, Figure 7 compares three algo-
rithms: Starchart, the rpart routine in R [R Core Team 2013] based on the CART
method [Breiman et al. 1984], and evtree, a state-of-the-art evolutionary algorithm.

Starchart achieves a very similar prediction accuracy as rpart, even though the
latter uses a slightly more sophisticated ANOVA [Freedman et al. 2007] split condition
than Starchart’s simple SSE comparison method. Compared to rpart, Starchart has
a simpler algorithm and less code, but the simplicity does not diminish its accuracy
and applicability for GPU tuning problems. The evtree algorithm actually gives worse
results than Starchart and rpart, likely for two reasons. First, because of the time
and space complexity of evolutionary algorithms, evtree must cap its tree heights
and evolutionary iteration counts to fairly low values. This significantly limits the
scale of the problems that evtree can handle, as well as the final tree’s accuracy.
Second, a globally optimal tree trained from sampled designs is not necessarily better
at predicting unsampled designs—that is, an optimal tree search algorithm may overfit
observed data.

Finally, while we want to compare the “best” parameter configurations found by
Starchart with those found by exhaustive search, in practice this is difficult due to
the extremely large design spaces that we explore (see Table III). However, for any
benchmark, a Starchart tree—even if not globally optimal—can at least identify the
partition that contains the “best” design in the sample set. This partition is likely
to also contain the “best” design in the whole space and is often small enough to be
exhaustively searched.

7.4. Baseline Starchart Algorithm Efficiency

Starchart is highly efficient. For 200 training samples, on a computer equipped with an
Intel Core i5 processor, our implementation generates a tree with about 50 partitions
in only a few seconds. This section gives a simple analysis of its algorithm efficiency.

In Algorithm 1, the main work is done inside the innermost body (lines 11 through
18) of the triple-nested loop. If we represent the number of elements (i.e., possible
parameter settings) in the set Vi (i.e., the value range for the parameter Pi) as |Vi|,
the loops on lines 9 and 10 combined together iterate O(n × |V |) times, where |V | =
(|V1|+ |V2|+ · · ·+ |Vn|)/n is the average number of values a parameter may take. (Note
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Fig. 8. Iterative Starchart’s prediction accuracy generally improves as more total training samples are used.
In Figure 8(b), only the dashed line uses the right y-axis. Subtract I (800 for dashed line and 60 for others)
from Figure 8(b)’s plotted values to get A.

that n × |V | = |V1| + |V2| + · · · + |Vn| is much less than the design space size |V1| ×
|V2|× · · ·× |Vn|.) Meanwhile, the loop on line 4 iterates as many times as the number of
partitions in the final tree, bounded by the total number of design samples (i.e., O(m))—
the worst case happens when the final tree is fully grown and every leaf partition
contains exactly one sample. Finally, lines 11 through 18 take a variable amount of
time to execute depending on the number of samples in a particular partition, also
bounded by m. Combining all preceding analyses gives a worst-case time complexity
of O(m2n|V |) for the whole algorithm. In other words, the algorithm’s complexity is
quadratic in the number of samples and linear in the number of parameters and their
choices, ensuring good scalability as the design space grows in size.

Starchart can account for interactions among as many parameters as the tree height
(easily 6 or more for 40 to 50 final partitions). In contrast, a linear regression approach
like Stargazer will have exponential growth in complexity when it starts exploring
higher-order interactions. In those algorithms, every additional level of interactions
(e.g., from two way to three way) extends the algorithm time cost by n (the number
of parameters). The multiplicative growth in time complexity is one reason linear
regression approaches are often limited to accounting for only pairwise interactions.

7.5. Iterative Starchart: Prediction Accuracy Versus Bounding Box Size

Next, we evaluate the performance prediction accuracy of Iterative Starchart given by
Algorithm 2. To reiterate, the goal of Iterative Starchart is to provide better accuracy in
a region of interest (e.g., the top t% best performing designs) without unduly sacrificing
accuracy over the whole design space. This is particularly valuable when we want to
target certain regions of interest while being subject to a limited sampling budget.

For the results presented in this section, we use I = 800 sample points for NVIDIA-
matrix and I = 60 for all else. These values are chosen using Figure 5(a) such that for
each kernel, I is a low sample count but still achieves reasonable coverage. However,
when actually using Iterative Starchart, we may not have Figure 5(a) for a given kernel.
Instead, one can use Section 7.1’s adaptive method to define I (e.g., the smallest sample
count to reach a 30% overall error).

With I chosen, we then vary t from 5% to 25%. For a particular t value, as described
in Algorithm 2, A additional samples along with the original I samples are used to
build an Iterative Starchart tree. Figure 8(b) shows the value of I + A for different
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Fig. 9. Iterative Starchart has lower within-bounding box prediction error than Baseline Starchart for all
applications. However, due to areas outside bounding boxes, overall error increases slightly.

t values. For experimental repeatability, A depends on t here because the additional
samples are taken from a preselected, fixed-size sample repository. Thus, a higher t
value generally increases the bounding box size and leads to more samples being taken
from the repository. However, real users would not have a sample repository, and thus
A would take a fixed value such as a fraction or multiple of I. Nevertheless, Figure 8(b)
shows that for most kernels, at t = 15, A takes a value of 30 to 40. Notable exceptions
include AMD-hotspot and NVIDIA-matrix, whose application characteristics make a
15% bounding box large enough to include most points from the sample repository.

Figure 8(a) shows the prediction error of Iterative Starchart trees trained using
sample counts shown in Figure 8(b). The same validation method as in Section 7.1
is used, with 200 validation samples never used in the tree-forming process. Only
prediction accuracy on those validation samples within the 15% bounding box (62 out
of 200 samples on average across all applications) is shown in Figure 8(a). (The overall
accuracy will be discussed later.) In the remainder of this section, we use t = 15 because
it strikes a balance between error reduction and training set size increase.

Figure 9 compares Baseline Starchart and Iterative Starchart for overall accuracy
(using all 200 validation samples) and for points within the bounding box (using on
average 62 out of 200 validation samples). Both trees are trained using the same
number of total samples shown in Figure 8(b). The first two bars for each application
show Baseline Starchart’s prediction accuracy (overall and within bounding box). The
second two bars per application show corresponding results for Iterative Starchart.
In general, for all applications, Iterative Starchart performs better (lower prediction
error) for points from the regions of interest (within bounding boxes). In fact, compared
to Baseline Starchart, Iterative Starchart has a 21% lower average prediction error for
points within the bounding box. For performance tuning, this ability to use iterative
sampling to quickly zoom in on the best-performing designs is very useful.

8. CASE STUDIES

As stressed in previous sections, the decision tree format used by Starchart can help
to answer many subspace-based design questions. This section presents case studies
that demonstrate how to formulate a few common design tuning problems as a series
of decisions that can be answered using a Starchart tree.

8.1. Design Space Pruning

When GPU developers optimize their applications for power or performance, they rely
largely on developer intuition to select optimizations, a process called design space
pruning. Such approaches can erroneously omit important portions of the design space
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Fig. 10. Our technique eases the process of
selecting good values for the five parame-
ters in the bfs kernel.

Fig. 11. The performance tree of bfs on AMD reveals that
performance does not have strong dependence on block.

from potential optimization. For bfs, a breadth-first search graph algorithm, this case
study shows how our approach differs substantially from prior work in its ability to
reveal important and local parameter interactions to efficiently and accurately optimize
parameter settings and prune uninteresting portions of the space.

As Table I shows, bfs on the AMD platform has five tunable parameters. Figure 10
shows the main kernel.2 block is the number of threads per block, and npt controls
the number of nodes processed by each thread. consec decides whether a single thread
processes nodes consecutively versus at even strides. The remaining parameters, pa-
attrib and pa-status, control data layout—that is, whether attributes of a node are
closely packed or spread out over different arrays. bfs is a memory-bound application
because it generates many scattered global memory requests to access node attributes
and status flags, easily saturating memory bandwidth. Given the possible settings
of these five parameters, 98,816 design points are possible. Using only 200 random
samples, Starchart is able to gain an accurate picture of localized performance trends
in different design subspaces. Figure 11 shows the resulting regression tree.

Without our method, programmers might have hunches or intuitions about how
parameters will behave, but these can be quite inaccurate. For example:

—Hunch 1: block should be the most important parameter. Increasing threads per
block usually helps to hide memory latency for memory-bound kernels like bfs.

—Reality: Figure 11 shows that block is actually almost never important anywhere
in the design space. This is because for bfs, only 64 threads are enough to saturate
memory bandwidth. Figure 12(a) shows this by plotting performance versus block
for all gathered samples. Clearly, there is no strong relationship between these two.

—Hunch 2: npt should not affect performance. High npt may increase data reuse, but
bfs’s large memory footprint is unlikely to benefit from the small GPU caches.

—Reality: Actually, the regression tree illustrates that npt has significant impact on
performance, especially when consec = 1. To further confirm this, Figure 12(b) shows

2For simplicity, nodes in the code have only one outgoing edge. Another smaller kernel—not shown or
tuned—does cleanup for this kernel.
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Fig. 12. Performance indeed depends on npt, and consec and pa-status further partition points into fairly
separate groups.

performance versus varying npt, proving that caches are still helpful for small npt
values.

—Hunch 3: The three memory locality parameters (consec, pa-attrib, and pa-status)
are similar optimizations and should be equally important or equally unimportant.

—Reality: Contrary to the third hunch, the three parameters related to memory locality
are not of equal importance. In particular, Figure 11’s regression tree shows consec
as fairly important and pa-status as conditionally important based on the value of
consec. The third locality parameter, pa-attrib, is not important enough to appear.
Figure 12(b) gives the data behind these trends. The consec parameter is clearly im-
portant because the two clusters that correspond to consec = 0 are mostly separated
from those where consec = 1. Likewise, the group where pa-status = 1 is distinct
from the group where pa-status = 0 for consec = 1. Careful code analysis shows
accesses to node status arrays are more scattered than accesses to node attributes,
hence the difference in parameter importance.

This example demonstrates how Starchart builds designer intuition about the overall
design space, as well as about relative parameter importance. Prior work has used
regression or clustering techniques to group points with similar performance results
using hardware performance counter values [Nagasaka et al. 2010] rather than us-
ing input parameters or hardware configurations. Thus, prior clustering techniques
might tie low cache miss counter values to high performance but could not directly
guide designers toward the hardware or software design decisions to achieve this. In
contrast, our approach’s output is tied directly to controllable parameters. The tree par-
titions that we identify can lead directly to software optimizations or hardware design
decisions.

8.2. Cross-Platform Program Optimization

GPU developers frequently need to optimize their applications for more than one plat-
form, but each platform’s distinct power and performance characteristics influence the
best configuration choices and how well the best settings can do. Developers may need
to (1) optimize the power or performance of an application on each of many different
platforms, (2) select which platform to run an application on according to some power
or performance criteria, or (3) optimize the power or performance of an application
simultaneously for several platforms. Starchart supports all three of these.

We collect 200 samples for each application on two distinct GPU platforms: NVIDIA’s
Tesla C2070 and AMD’s Radeon HD 7970. Each sample is tagged with a binary
parameter, nvidia, which takes 1 for NVIDIA runs and 0 otherwise. Our tool
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Fig. 13. The cross-platform tree of hotspot identifies particularly good designs for AMD and NVIDIA,
respectively.

then analyzes all of these samples simultaneously, producing the regression tree in
Figure 13.

In Figure 13, the highest-performing design subspaces for each platform are shaded
in gray. Most notably, our partitioning approach helps a developer see that they are
nonoverlapping and arise from very different parameter choices on each platform. The
best subspace occurs on AMD when blocking factor values are x ≤ 15 and y ≤ 5.
On NVIDIA, the best options are x > 7 and y > 5. The reason the subspaces do not
overlap is because these platforms contain different amounts of thread resources. The
best configurations of hotspot for AMD and NVIDIA are 6.3× and 1.3× faster, respec-
tively, than the default parameter configuration provided with the Rodinia distribution,
which uses parameter values x and y that are suboptimal for both platforms. Thus, an
autotuner developer seeking to identify the best platform-specific settings could use
Starchart to quickly guide design choices for the hardware encountered.

Cross-platform analysis becomes even more complex when trade-offs vary depending
on other parameter choices. For example, Figure 13 indicates that the best NVIDIA
subspace is 1.98× faster than the best AMD subspace, but the worst NVIDIA subspace
is 1.85× slower than the best AMD subspace. The kmeans design space (not shown due
to space limits) exhibits a similar issue. The best subspace on the AMD platform is
8.42× faster than the best NVIDIA subspace, but the worst AMD subspace is 1.29×
slower than the best NVIDIA subspace. Starchart helps developers consider a platform
choice in concert with the the application’s entire parameterized design space.

Finally, developers may want to optimize applications for multiple platforms simul-
taneously. Our partitioning tool enables developers to recognize which software param-
eters are so important that they impact power or performance on multiple platforms.
For example, the kmeans regression tree (not shown) indicates that the most important
parameter for performance optimization is tpp. The subspace where tpp > 1 is 3.93×
faster than the subspace where tpp = 1, regardless of platform. For developers trying
to create a generically optimized application, our tool helps to identify parameters that
impact power or performance on multiple platforms.

In summary, this case study has shown how Starchart’s regression trees give de-
velopers the insight needed to optimize an application in a platform-dependent or
-independent manner or to choose the best possible platform for a given application.
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Fig. 14. The bfs performance tree on the NVIDIA platform shows that turning on caches has adverse effects
on runtime.

8.3. Automating Cache Configuration

GPU developers also face hardware configuration decisions, such as the highly config-
urable caches on some recent NVIDIA GPUs. Users can configure on a per-instruction
basis whether or not to use a cache and can trade off cache capacity against shared
memory capacity. NVIDIA recommends that developers experimentally determine the
best cache configuration [NVIDIA 2009]. In this case study, we show how our partition-
ing algorithm assists with such decisions.

Table II shows the NVIDIA cache configuration parameters to consider. Once these
parameters are added to the design space, sampling and tree formation proceeds as
discussed previously. Here, we create both power and performance trees.

Across our benchmark suite, caches have a widely varying impact. For example, in
hotspot, the performance partition tree (not shown) shows clearly that caching has
little influence on this program. This is because hotspot uses shared memory as its
main workspace and relies little on global memory and, consequently, caches.

In contrast, Figure 14 shows when the cache parameter is influential for bfs and
helps to clarify its effects. In the consec = 1 and npt > 16 portion of the tree, turning
caches on (use-l1 = 1) can hurt performance (3.4ms vs. 2.4ms) by almost 50%. This is
because when caches are turned on, the NVIDIA hardware issues longer memory re-
quests than when caches are not used. The longer memory requests created by caching
increases bfs’s already-high memory bandwidth demands and degrades performance.
However, the use-l1 parameter is not visible in the subtree for npt ≤ 3. The npt ≤ 3
setting limits the impact that longer memory access requests have on the application’s
bandwidth demands.

Caching can also influence GPU power dissipation in similarly subtle ways. Later,
Figure 16(a) shows the power tree for swap when the caching parameters are included.
It shows that when tpp ≤ 8, using a cache helps to reduce power consumption. However,
the tree also shows that the impact of caching is unclear when tpp > 8.

This case study shows how our technique can determine when new hardware fea-
tures should be used and how to configure them. Whether to use a hardware feature
like caches depends heavily on the interplay between several of the software and
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Fig. 15. The bfs performance tree on the AMD platform shows its input sensitivity.

hardware parameters in the design space. Partition trees can help to visualize these
issues.

8.4. Characterizing Program Input Sensitivity

A program’s runtime almost always scales with input data. For this reason, perfor-
mance tuning generally requires the use of “typical” input data, and the resulting
conclusions can be highly input dependent. Clearly, optimizations may vary in complex
ways with input characteristics. Thus, this case study shows that our method cleanly
handles scaling program input sizes. We treat input size/characteristics as additional
design parameters in addition to parameters in Table I; our algorithm then automat-
ically discovers the importance of these parameters and how they interact with other
design parameters. Because some input characteristics (e.g., graph connectivity or ma-
trix shape) inevitably affect input size, all performance numbers in this case study
are normalized against their respective input sizes—that is, we study computational
throughput instead of absolute runtime.

For some applications, such as matrix, computational throughput is relatively un-
affected by input characteristics. We run matrix over a range of differently sized
and shaped input matrices (from 400 ×400 to 3,200 ×3,200 elements) and find that
these input parameters do not appear anywhere in the top portion of the generated
trees (not shown due to space constraints). This demonstrates that matrix scales
well with varying input sizes. It also indicates that optimizations based on param-
eter settings that do appear in regression trees are applicable across a wide range of
inputs.

For bfs, we use a random input graph generator that takes in two parameters: (1) the
number of nodes, size, which varies from 50K to 1M, and (2) the average number of
edges a node connects to, conn, which varies from 1 to 32. The generated tree is shown in
Figure 15 and leads to the following observations. First, a graph’s size is overall a more
important performance determinant than graph connectivity (conn). This is because
graphs with more nodes require more resources (more threads) to process than graphs
with more edges (no extra threads). Second, smaller graphs (≤100K nodes) and high
npt values significantly reduce bfs’s throughput. This is because when npt is high, each
thread processes so many nodes that very few thread blocks are launched, not enough
to keep all GPU multiprocessors occupied. Our method automatically and clearly spots
such abnormal performance issues. Finally, consec improves performance for large
graphs with low connectivity (conn ≤ 8). Unlike prior work, Starchart’s focus on local
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Fig. 16. Power/performance trade-offs of swap in kmeans on the NVIDIA GPU.

subspaces helps to identify optimizations that are conditionally important for certain
input sizes/characteristics.

8.5. Exploring Power/Performance Trade-Offs

GPU system and application performance optimization is increasingly subject to power
constraints. However, few automated approaches have been proposed to tackle power-
aware performance optimization. Most prior design space exploration studies [Lee and
Brooks 2006; Jia et al. 2012; Hong and Kim 2009; Nagasaka et al. 2010; Chen et al.
2011] can only model one metric at a time. One study proposes modeling power and
performance in conjunction [Hong and Kim 2010], but that study’s approach requires
extensive user knowledge about the program and imposes strong limits on the types of
programs that can be analyzed (e.g., they must saturate memory bandwidth).

Because Starchart breaks down an application’s design space into partitions with
distinct power and performance characteristics, users can naturally and efficiently
explore design space power/performance trade-offs. Furthermore, because partitions
are derived from original program parameters, users can immediately know how to set
parameters to achieve the power/performance of the partitions that meet their goals.

Figure 16(c) shows power and performance of the 200 kmeans design samples on the
NVIDIA platform. Ignoring different plot symbols, designers would generally have no
clue which parameter settings have caused such a wide range of power and performance
variation. If, for example, they must limit GPU power consumption to below 150W and
meet a runtime target of 10ms (indicated by dotted lines), it is difficult to know which
particular parameter settings would result in qualified designs.

Starchart trees help to answer these questions. Figure 16(a) shows the power tree
of kmeans. Clearly, the design subspace with tpp ≤ 8 and use-l1 = 1 has a power
consumption generally below 150W. This is due to less intense thread activities
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(tpp ≤ 8) and the use of caches (use-l1 = 1). Likewise, kmeans’s performance tree
(Figure 16(b)) shows that the design subspace with tpp > 1 can generally meet the per-
formance goal due to increased interthread parallelism. By intersecting these two sets
and plotting them using different symbols (triangles and circles in Figure 16(c)), we see
that these designs occupy most of the targeted power/performance region. Deeper par-
titioning can better sharpen adherence to certain power or performance constraints.
Additionally, per-partition power or performance summary values can be based on
the “worst” value for samples in the region (e.g., max power/runtime) instead of the
average.

Sometimes the power or performance goals of a system change dynamically at run-
time due to events such as low battery state and reduced power budget. In these situa-
tions, our method can help to adaptively determine the necessary program state tran-
sitions. For example, assume that the program runtime target becomes more stringent
from 10ms to 5ms, without changing the power budget. Users can look at Figure 16(b)
and decide that tpp must be increased to greater than 3. Because the performance
target is being tightened rather than relaxed, users just need to go deeper into the tree
instead of backtracking. Figure 16(c) shows that designs with tpp > 3 (circles) are very
likely to achieve the new power/performance goal. Compared to a high-performance
high-power design, designs within this region can save up to 47W (or 26% of total
power) with less than 10% performance slowdown.

Finally, we describe some interesting power-tuning observations encountered in our
experiments. For some benchmarks, such as bfs, kmeans, and matrix, program design
choices significantly influence power usage. In particular, global memory traffic is very
power consuming. For example, for matrix, buffering content in shared memory saves
considerable power versus always fetching content from global memory; for bfs, the
effective use of L1 caches can lower power usage regardless of whether runtime is
improved. Additionally, the same program over the same range of optimizations has
more power variation on the AMD platform than on the NVIDIA platform, presumably
because the AMD platform is newer and can better power gate various system compo-
nents. All power trends described earlier are easy to spot in the power trees generated
by Starchart. As performance-per-watt becomes an increasingly important metric, a
power-aware tuning tool like Starchart can be useful to many users.

9. CONCLUSION

This article presents a novel partition-based approach for viewing GPU application tun-
ing spaces and an automated algorithm for generating such partitions. The partition-
based view is proven to be effective at visualizing and representing a GPU program’s
complex tuning process and can be utilized to tackle many practical application tuning
tasks in a holistic fashion. Experiments show that on two different platforms, for six
diverse GPU kernels, and with two different metrics, our method uses samples less
than 0.3% of the entire tuning space to build accurate and compact trees representing
the inherent hierarchical structure of these spaces. An optional iterative approach can
further increase accuracy for areas of interest through guided design sampling. Fi-
nally, detailed case studies are presented to show how this algorithm can help to solve
application tuning problems such as pruning program design parameters, optimizing
program performance across platforms, automating cache configuration, characterizing
program input sensitivity, and doing power-aware performance optimization.
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