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Modern processors rely on predictive structures and policies (e.g., branch predictor, branch target
buffer, cache prefetch and replacement policies, etc.) when making important control and data flow
execution decisions [1, 2]. To maintain forward progress while awaiting resolving instructions, early
computer architects looked toward speculation, acting on predicted directions of control flow. Without
timely and accurate prediction, processor architectures might still be relegated to the age of stall-heavy
sequential execution: now-basic computer architectural concepts like instruction-level parallelism, out-
of-order execution, and speculative execution rely on making sound predictions. While we as humans
may still not be able to look into the future, we have methods for “learning from the past” to make useful
predictions of what is to come. Within the realm of computing, my research has focused on making
microarchitectural predictive structures and their policies more accurate and resilient to changing com-
puting demands and trends. The following sections overview some of my work on improving predictive
structures and policies.

Indirect Branch Target Prediction

A major predictive structure along the critical path of execution is the branch target buffer, or BTB [3].
The BTB supports branch prediction and speculation by caching branching instructions’ previously seen
target address values.

The processor must also consider indirect branches, whose target addresses are unknown (i.e., not
hardcoded in the instruction) and are computed at execution time. The BTB is insufficent to do this on-
the-fly address computation; using it naively would result in unwanted control flow transfers and pipeline
flushes from resulting misspeculations. Difficult-to-predict indirect branches have become increasingly
common as object-oriented languages become more prevalent [4] in computing workloads1.

This change in instruction trends motivated us to create a branch target prediction scheme that better
predicts indirect branches. Using a series of small learning predictors, my work Bit-Level Perceptron-
Based Branch Predictor [8], or BLBP, predicts individual branch target addresses’ based on correlations
in branch history. BLBP predicts target address values at the bit level, outputting individual 0 and 1 bit
predictions for the low-order bits of indirect branch target addresses. BLBP then selects the BTB address
entry which matches closest to the output bit-order predictions. BLBP achieves a misprediction rate of
0.183 misses per 1000 instructions (MPKI), compared to 0.193 MPKI for ITTAGE [9] and 0.29 MPKI
for a VPC-based [4] indirect predictor.

BLBP helps the instruction front end remain fed with correctly speculated instruction streams. Though
computing workloads’ instruction mixes may evolve over time, schemes such as BLBP can help archi-
tectures remain agnostic to these trends, maintaining high processor performance.

Predictive Replacement Policies for Translation Lookaside Buffers

Translation Lookaside Buffers (TLBs) [10, 11] play a critical role in hardware-supported memory vir-
tualization. To speed up address translation and reduce costly page table walks, TLBs cache a small
number of recently used virtual-to-physical address translations. The TLB lies on the critical path to
accessing memory and must make the best use of its limited capacities [12]. Thus, TLB entries with
low potential for reuse should be replaced by more useful entries. We do this by evicting entries deemed

1Object-oriented languages generate many more indirect branches due to their support of polymorphism [5, 6]. For
example, up to 23 times more indirect branches have been observed in C++ programs compared to those in C. [7]. Indirect
branches are also ubiquitous since they support programming constructs like switch-case statements, jump tables, function
pointer calls, and procedure returns.

1



Elba Garza Research Statement

dead, or unlikely to be re-referenced [13]. Replacement policies are also predictors – they predict the
future usefulness of a cached entry and evict it if deemed dead.

Control Flow History Reuse Prediction [14], or CHiRP, contributes to an aspect of TLB manage-
ment that has received little attention in the literature: replacement policy. To the best of our knowledge,
the literature has only advocated least-recently-used (LRU) replacement or random replacement policies
for TLBs and have proposed no TLB-specific replacement policy.

CHiRP shows how predictive replacement policies can be tailored toward TLBs, reducing miss rates
and improving overall performance. By first applying recently proposed predictive cache replacement
policies to the TLB, we show these policies do not currently work well without considering specific
TLB behavior. This behavior stems mainly from the coarser granularity of TLB entries compared that
of cache blocks, roughly 4KB versus 64B! CHiRP uses a history signature and replacement algorithm
that correlates to TLBs’ larger data granularities, outperforming other policies applied to TLBs. CHiRP
reduces misses per 1000 instructions (MPKI) by an average 28.21% over the common LRU policy.

CHiRP is especially useful in the era of mixed page sizes, which can range from 4KB up to 1GB [15,
16]. Imagine: if one TLB entry’s page covers 4KB of program data and another covers 2MB, which
one’s translation entry is more important to keep? The answer is not as easy as always choosing to
keep larger pages for their data footprint/locality—the cost of keeping large pages in memory must
also be considered, along with their known negative effects like memory fragmentation. On the other
hand, smaller pages’ translations are “cheaper” to maintain (and many more fit in memory!), but may
not adequately cover larger applications memory footprints and lead to frequent page faults. The gen-
eral caching problem [17] applied to TLBs suddenly becomes much more complicated, all because of
supporting non-uniform sizes!

We have set the stage for further research by the computer architecture community into TLB replace-
ment. As computing workloads trend ever larger [18, 19, 20], memory caching structures like the TLB
are the first line of defense for avoiding costly memory accesses latencies.

Predictive Replacement Policies for the Instruction Cache and Branch Target Buffer

Just like translation lookaside buffers (TLBs) discussed in the previous section, both instruction caches
(I-cache) and branch target buffers (BTBs) must make the best use of their limited capacities amidst the
same timing constraints. Also like TLBs, replacement policies for the I-cache and TLB are a relatively
unexplored topic, with little literature on the topic. Thus, we developed Global History Reuse Predic-
tion, or GHRP [21], the first predictive replacement policy tailored for the I-cache and BTB. GHRP uses
the history of past instruction and branch addresses to predict dead blocks eligible for eviction in the
instruction cache and branch target buffer. We show that a highly accurate predictive replacement policy
like GHRP can help reduce misses in the I-cache and BTB. GHRP reduces the rate of misses per 1000
instructions (MPKI) an average of 18% over a least-recently-used policy in over 600 tested workloads.

While coarse page granularity molded the history signatures used by CHiRP, GHRP looks to global
histories of instruction and branch addresses for its signature generation. Previous known replacement
policies are ill-suited for the I-cache and BTB because their tracking signatures are PC-based [22, 23], a
feature found to have little correlation with instruction and branch reuse.

This work was a collaborative effort, influencing my interest and focus on predictive structures such
as the BTB, which led to the generation of my BLBP work described before. As a motivating work and
as a co-author, I present this as part of my cohesive story of predictive structure and policy improvement
strategies.

Through the previous sections, I emphasize the need for smarter predictive structures and policies to
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combat changing computing trends–the I-cache and BTB are obviously no exception to this. Along with
the TLB, the I-cache and BTB help comprise the highly speculative front end of processors; keeping
them highly accurate ensure better instruction throughput, no matter the workloads.

Current Work and The Future

My current as-yet-unpublished work continues the ideas presented in this statement. In particular, I
now look toward creating more dynamic instruction and data prefetching structures via hybridization
techniques. The act of prefetching is yet another form of computer architecture prediction. This time, it
is the prediction of not just what instructions or data my program will soon require, but also when. We
aim to increase prefetching coverage (i.e. data prefetched on time and found useful) by taking advantage
of multiple prefetchers’ learning techniques. Hybridization is known to be successful in other predictive
structures, including prefetchers [24]. I would love to say more, but this work is not yet ready for
publication!

While many teaching-focused professors tend to conduct research in computer science education, I
wish to continue my work in computer architecture. Instruction and data working set sizes are signif-
icantly increasing, presenting a challenge to the way industry currently approaches microarchitecture
design. My research vision for the next ten years is to investigate how best to leverage microarchitec-
tural prediction to overcome this challenge, given real-world technology constraints. Collaborating with
academic and industrial colleagues, I wish to advise undergraduate and graduate students drawn from a
diverse population, offering novel solutions to tomorrow’s technological problems while nurturing and
training future generations of computer architects.

I believe it’s important to remain current in my research: along with entry level courses, I especially
hope to teach architecture-related courses. It is thus doubly important that my teaching reflects new
trends and knowledge.
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