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Abstract—Translation Lookaside Buffers (TLBs) play a critical
role in hardware-supported memory virtualization. To speed up
address translation and reduce costly page table walks, TLBs
cache a small number of recently-used virtual-to-physical address
translations. TLBs must make the best use of their limited
capacities. Thus, TLB entries with low potential for reuse should
be replaced by more useful entries. This paper contributes to
an aspect of TLB management that has received little attention
in the literature: replacement policy. We show how predictive
replacement policies can be tailored toward TLBs to reduce miss
rates and improve overall performance.

We begin by applying recently proposed predictive cache
replacement policies to the TLB. We show these policies do not
work well without considering specific TLB behavior. Next, we
introduce a novel TLB-focused predictive policy, Control-flow
History Reuse Prediction (CHIRP). This policy uses a history
signature and replacement algorithm that correlates to known
TLB behavior, outperforming other policies.

For a 1024-entry 8-way set-associative L2 TLB with a 4KB
page size, we show that CHIRP reduces misses per 1000 in-
structions (MPKI) by an average 28.21% over the least-recently-
used (LRU) policy, outperforming Static Re-reference Interval
Prediction (SRRIP) [1], Global History Reuse Policy (GHRP) [2]
and SHiP [3], which reduce MPKI by an average of 10.36%,
9.03% and 0.88%, respectively.

Index Terms—Translation Lookaside Buffers, Replacement
Policies, Paging, Microarchitectures

I. INTRODUCTION

Virtual-to-physical address translation is expensive [4], [5],

[6], [7], [8], [9], [10], [11], [12], [13], [14], [15]. Translation

lookaside buffers (TLBs) help minimize the need for costly

page table walks by caching recently retrieved virtual-to-

physical address mappings [16], [17].
Recent studies by Google [18], asmDB [19], and Face-

book [20] confirm that modern deeply pipelined speculative

OoO CPUs face increasing challenges associated with TLB

performance. For example, server workloads show growing

code footprints and working set sizes [18], [21], [22], [23],

placing tremendous pressure on caches and TLBs [24]. The

caches and TLBs of future systems will need to improve at a

similar rate to maintain performance.
Unfortunately, TLBs are limited in size, and thus reach, due

to power, timing, and area constraints [25]. The TLB lies on

 SHiP 

Fig. 1. Comparing predictive policy efficiency with a heat map shows CHIRP
maintains more live TLB entries compared to other policies when analyzed
on 870 different benchmarks. A lighter color block indicates higher TLB
efficiency, while darker denotes lower efficiency.

the critical path to accessing memory. Thus, increasing L2 TLB
sizes to reduce TLB misses is difficult because larger TLBs

incur higher access latencies [26].

Meanwhile, TLB misses are a first-order concern in terms

of their negative impact on performance. Recently studies [27],

[28], [29] indicate that many programs can spend hundreds of

extra cycles conducting address translations that did not hit in

the TLBs. This is despite the fact that the Skylake architecture

includes special MMU/paging structure caches (or PSCs) to

lessen the page walk penalty [30]. The study [27] finds L2

TLB miss costs range from 16.3 cycles for Sandy Bridge in

2011, increasing up to 212 for Skylake in 2015, 272 cycles

for Broadwell Xeon in 2016, and 230 cycles for Coffee Lake

in 2017. Such overhead is likely to be exacerbated in the
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future1given that modern computing platforms can now be

supplied with terabytes, and even petabytes, of main memory

[32], [33] , all on various memory-intensive workloads that

are rapidly emerging [18], [19], [20], [28].

Translation overheads running into 100+ cycles have also

been reported in prior work [13], [14]. Address translation

latencies due to TLB misses represent between 20% and 50%

of system run-times today [9], [10], [13], [14], [34], [35], [36],

[37], [38], [39], [40], [41] and consume a substantial share of

processor energy [4], [5], [6], [7], [11], [15], [42].

Peng et al. conduct a thorough study of TLB behavior of Java

applications [43], reporting 230+ cycle TLB miss latencies

and indicate TLB miss overhead accounts for 5.5% to 19%

of the total execution time. Their study finds that five out of

seven benchmarks exhibit similar TLB overhead.

These concerns motivate us to investigate mechanisms to

improve TLB performance that do not require increasing

TLB sizes. Similar efforts to improve TLB performance have

included using varied page sizes and superpages [24], [44],

[45], [46], [47], [48] as well as prefetching [36], [49], [50],

[51].

Fortunately, TLBs’ organization makes them amenable to

predictive replacement policies. TLBs are organized with

tagged set-associative SRAM arrays much like cache memories.

Predictive replacement policies have been well-explored and

have been shown to perform well in data caches [3], [52],

[53], [54] that depend on spatial and temporal locality of

data accesses to maintain useful entries. Access patterns to

TLBs are similar to cache accesses at a larger granularity.

Thus, it is reasonable to apply previous work on cache

replacement/management to TLBs.

TLB replacement policy has received little attention in the

literature. Recent work [14], [34], [36], [37], [38], [55], [56],

[57], [58] advocates using an LRU replacement policy for all

levels of TLBs. Other prior work focuses either on reducing

the cost of a page table walk upon a TLB miss [10], [34],

[49], [50], [51] or reducing the TLB miss rate by extending

the size of the TLB [26]. In this paper, we suggest tackling

the fundamental problem of the TLB’s insufficient capacity by

improving its replacement policy.

Our work builds on prior predictive replacement policies

geared toward the last-level cache (LLC), such as static re-

reference interval prediction (SRRIP) [1], signature-based hit

prediction (SHiP) [53], and Global History Reuse Prediction

(GHRP) [2], to extract key insights for the TLB. We propose

a novel mechanism, Control-flow History Reuse Prediction

(CHIRP), that provides superior prediction accuracy and

performance by better correlating to TLB reuse behavior.

We begin with predictive policies adapted from the cache

replacement literature, in particular the last-level cache (LLC),

and show that they are not a good fit for TLBs. We show

that features used by these schemes do not correlate well to

TLB reuse, resulting in negligible performance gains. Moreover,

LLC-focused prediction policies are designed with less stringent

1The new generation of Intel processors, Sunny Cove [31], introduced
5-levels radix page tabling.

cycle time requirements and can tolerate several accesses

to their prediction tables. TLBs, on the other hand, have

tighter timing requirements for TLB access. Based on this and

other insights, we introduce a policy that efficiently indexes

prediction tables using a novel signature specifically designed

to correlate to TLB behavior. We focus on the L2 TLB as L2

TLB misses account for most of the cycles spent in the TLB

miss handler [41].

This paper makes the following contributions:

1) A first study and exploration of TLB replacement policies

by implementing and adapting policies from previous

work on data caches and branch target buffers to the TLB.

2) An intuition on why previous predictive replacement

policies may or may not be as effective on TLBs. We

evaluate the impact of various optimizations on adapted

predictive replacement policies over a large suite of

industry-sourced traces.

3) A new predictive replacement policy, Control-flow History

Reuse Prediction (CHIRP). This policy indexes prediction

tables using a signature specially designed to correlate

with TLB behavior. It reduces L2 TLB misses by 28.21%

on average over LRU, resulting in significant speedup. For

example, for a page walk latency of 150 cycles, CHIRP

yields a geometric mean speedup of 4.8%.

II. BACKGROUND

Processor performance is affected by the TLB in two ways:

the number of TLB misses and the TLB miss penalty in cycles.

While other solutions have mainly focused on reducing the

TLB miss penalty, very little work has focused on reducing

the number of misses in the TLB directly. There have been a

handful of papers on prefetching into the TLB [36], [49], [50].

However, to the best of our knowledge, no previous work has

proposed a predictive replacement policy specifically for TLB.

Rather, recent work employs LRU or Random replacement

policies [14], [34], [36], [37], [38], [55], [56], [57], [58], [59].

We advocate using a predictive replacement policy that relies on

a variety of program features to guide TLB entry replacement

to improve performance without needing to increase the TLB’s

size.

Recent work in cache and BTB replacement shows that

reuse prediction can significantly reduce misses and improve

performance [2], [3], [53], [54], [60], [61], [62], [63]. Predictive

replacement policies attempt to predict whether a cached item

will be used again before it is evicted. If not, then it is a prime

candidate for eviction. This idea is superior to LRU replacement,

in which a block with no near-term reuse must migrate all the

way down the recency stack before being replaced. However,

a highly accurate predictive replacement policy for one cache-

like structure may not work for another cache-like structure.

For example Mirbagheret al. [2] show that while PC-based

policies such as SDBP [3] and SHiP [53] reduce the number of

dead blocks in the LLC, it is detrimental to instruction caches

and BTBs. We find the same applies to TLBs.

There are three main challenges in designing a predictive

replacement policy. The first is finding the microarchitectural
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features that correlate with reuse for a particular cache-like

structure. These features vary for different structures such as

the TLB and data caches, and even different applications [2],

[3], [53], [54], [60], [61], [63]. The second is building an

efficient signature by combining the identified correlating

features. The features are combined to reduce their hardware

storage budget and prediction time. The third is designing a

fast/low-cost prediction algorithm to use this signature. The

latter is particularly important for the TLB as it lies on the

critical path to a memory access.

Once we identified highly correlating features of TLB entry

reuse, we adapted previous algorithms to propose a novel,

low-cost algorithm specifically tailored for reuse prediction

in L2 TLBs. Previous work on LLC reuse prediction that

uses prediction tables has used multiple features hashed to

multiple indices [3] or signature [54], [63] to combine several

predictions into one. Because the TLB is on the critical path to

accessing memory, we reduce accesses to a single table with

a signature combining several features as the most latency-

sensitive approach.

We explore using predictive cache replacement policies

such as static re-reference interval prediction (SRRIP) [1],

signature-based hit prediction (SHiP) [53], and Global History

Reuse Prediction (GHRP) [2] for the TLB, and propose a new

mechanism, Control-flow History Reuse Prediction (CHIRP),

to better guide TLB entry replacement.

A. Static Re-Reference Interval Prediction

SRRIP [1] predicts which blocks will be referenced again

(i.e. re-referenced) in the cache. Each block has a 2-bit re-

reference prediction value (RRPV) placing the block into one

of four categories ranging from near-immediate re-reference

to distant re-reference. A first prediction is made on block

placement and revised when a block is reused or replaced.

Blocks with distant re-reference prediction are evicted. If there

are none, the RRPV for each block in the set is incremented

until there is at least one eviction candidate. We adapt SRRIP

to work with TLB entries instead of cache blocks.

B. PC-Based Dead Block Predictors

In sampling-based Dead Block Prediction (SDBP) [3], a

predictor learns the pattern of accesses and evictions from a

small number of sets kept in a structure called the sampler.

When a load or store accesses the LLC, the address (PC) of

that instruction is hashed to index prediction tables. Counters

read from the tables are summed and thresholded to predict

whether the block is dead. In the original SDBP paper, blocks

are predicted on each access [3]. Signature-based Hit Prediction

(SHiP) improves on this idea by using the prediction only for

placement in a RRIP-replaced cache, reducing the number of

predictions and significantly improving performance.

However, sampling is not suitable for structures indexed by

instruction addresses such as the BTB and instruction cache [2].

Sampling works for data caches because the behavior of a

memory access instruction, represented by its PC, generalizes

over the entire cache. Instruction streams do not allow set

sampling to generalize the behavior of accesses to such

structures since the PC itself forms the index into the structure.

We find that sampling also does not work well for second-

level TLBs. The reason is the coarser granularity of TLB entries

versus cache blocks. A PC accesses different data addresses that

are in the L2 TLB, which might lead one to believe sampling

should generalize across the TLB. However, in the LLC, one

sampled set may map to many cache sets all accessed by the

same PC, which allows behavior to be generalized across sets.

On the other hand, in the L2 TLB, one PC accesses data that

are mapped to much fewer TLB entries than cache blocks.

Spatial locality for data accessed by a single PC does not

expand beyond a few TLB entries, so generalization fails.

Because of this failure, in this work we evaluate SHiP with

the same general algorithm, but with bits of PC kept as metadata

in each TLB entry, which is equivalent to keeping a sampler

the same size as the structure. We consider SHiP to be the

best cache replacement policy from previous work that would

be implementable under the tight timing requirements of the

TLB access critical path.

C. Global History Reuse Prediction

Global History Reuse Prediction (GHRP) [2] is the state-

of-the-art predictive replacement policy for BTB and i-cache

replacement. We adapt GHRP for TLB replacement. GHRP

has a structure similar to SHiP, but the signature used to index

the prediction tables is specifically designed for instruction

streams. Like a branch predictor, it uses the global history of

conditional branch outcomes [64] as well as lower-order bits

from branch addresses to form an index into a table of counters

that keep track of reuse behavior.

D. Offline Learning

We use insights from neural networks to design a new hand-

crafted feature that represents a program’s control-flow history

compactly and that can be used with a much simpler linear

learning model. Offline training has been used for designing

replacement policies in the past through using genetic algorithm

by Jiménez et al. [65] and LSTM by Shi et al. [66]. Their work

shows how insights from offline training can improve learning

model for online prediction in the LLC. We use ADALINE

(ADAptive LINear Element) [67], [68] to find insights for TLB

replacement policy.

ADALINE uses a vector of weights that records correlations

between an input vector and a target value. It can be used to

classify inputs into one of two classes.

ADALINE computes the weighted sum of the input patterns

x(n).
y(n) = wT (n)x(n) + θ

ADALINE weights are updated after the desired outcome d(n)
of the predicted event is known. If the prediction was correct

then the weights remain unchanged. Otherwise, the inputs are

used to update the corresponding weights.

w(n+ 1) = w(n) + μ[d(n)− y(n)]x(n)
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where μ is the learning-rate parameter and the difference d(n)−
y(n) is the error signal.

E. CHIRP

We explored adapting predictive cache replacement policies

to the TLB and observed that features that correlate well to

cache reuse behavior may not necessarily correlate well to TLB

reuse behavior. In contrast to a cache access, a TLB access is

of coarser granularity with many PCs that map to the same

TLB entry. Furthermore, depending on the context, each such

PC may result in an eviction or a reuse of the same TLB entry.

We find that predicting a TLB entry’s reuse requires multiple

features that we compose into a single signature for better

prediction accuracy and overhead reduction.

III. THE REUSE PREDICTION PROBLEM IN TLB & OUR

SOLUTION

We find that predictive policies for the LLC, instruction

cache, and BTB do not apply well to L2 TLBs, and describe

the main reasons why in this section.

We simulated 870 workloads from a variety of categories

provided publicly by Qualcomm [69] to prevent overfitting to

one type of workload. More information about the full details

of our simulation methodology can be found in Section V.

We first applied signature-based hit prediction (SHiP) [53],

which was shown to be useful in the LLC. SHiP uses only

the address (PC) of the most recent instruction. However, our

results show that a solely PC-based reuse entry prediction does

not perform much better than LRU, giving a reduction in MPKI

of only 0.88%.

We investigated whether aliasing was the cause of the

observed mispredictions, but found that even with an unlimited

prediction table size (i.e. no aliasing), SHiP is not able to

detect dead entries in the TLB, giving a reduction in MPKI

of only 0.63%. Since prediction table size was not the source

of the mispredictions, we further investigated by limiting the

prediction to only a subset of the TLB sets and used LRU for

the rest. This technique also just slightly improves accuracy,

reducing MPKI by 1.28%, leading to the following observation:

Observation 1: The inaccuracy in previous predictive poli-
cies for the TLB is not due to conflicts among multiple sets
but rather within the sets themselves.

We find that a TLB entry may experience many hits from one

or more PCs that map to the same entry before it is eventually

evicted. This is because a larger range of unique addresses map

to the same entry in the TLB compared to accesses to a block

in a cache. Indeed, there is a nearly two order-of-magnitude

difference between a 4KB page and a 64B block.

Therefore, we obtain our second observation:

Observation 2: The coarse-grained nature of TLB accesses
results in increased aliasing in previous predictive policies,
which cause the prediction counters to saturate too quickly,
rendering the predictor ineffective.

From Observation 2 we posit that in order to dissipate this

noise, we need to slow down the rate at which the prediction

counters are updated. We do this by limiting updates only to

hits of a TLB set different from the one last accessed. We

call this method Selective Hit Update. Selective Hit Update

improves accuracy by reducing average MPKI by 5.85%.

Previous work [2], [66] has shown that a longer history

of past PCs would benefit predictive replacement policies in

the LLC and i-cache. Figure 2 shows our results conducting

a similar study for the TLB. Here, we analyze varying PC

history lengths from 4 to 40 and their resulting speedups.

We find that the benefits of using longer global PC history

for TLB reuse prediction diminishes beyond a length of 15.

This contrasts with prior work on predictive policies for the

LLC, which show benefits of using global PC history length

of 60 or more. This is likely due to the coarse-grain nature

of TLB accesses that may limit the global history window

from capturing enough information pertaining to TLB reuse.

To improve on this, we augment the global PC history with

branch path history information, resulting in a history length

greater than 30 (Figure 2). Hence, our third observation is as

follows:

Observation 3: TLB reuse prediction does not benefit from a
global PC history of length 15 or more. However, by combining
branch path history into a prediction signature, CHIRP can
take advantage of a PC history length of 30 or more.

Fig. 2. Speedup does not increase for global PC history length more than 15.
However, combining branch history into signature, CHIRP can benefit from
history lengths longer than 30.

Branch history is effective because L2 TLB accesses come

from both data and instructions in the first-level TLBs. Con-

ditional branch histories can reflect the data accesses when

global path history does not. Branch path history can also

reveal high-level program semantics that also contribute to

TLB misses.

A. PC Bits Carry Uneven Weights

Previous work [65], [66] shows that certain features from

program behavior are important to predicting reuse of a block in

the LLC. We come to the same conclusion with regard to TLBs,

recognizing that some bits of the PC carry more weight than

others in reuse prediction. To show this for the case of TLBs,

we use the weights of a trained ADALINE neural network to

score the bits of PCs that we incorporate into the global history.

The idea is based on the principle that the weights of the input
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Fig. 3. Each row represents an offline-trained ADALINE weight vector for
one benchmark. The x-axis shows the PC bit used as input. The white boxes
show reuse prediction in TLB entries is strongly correlated with bits 2 and bit
3 of the PC.

nodes corresponding to less important features are expected to

be smaller in trained ADALINE networks. The incorporation

of appropriate regularization terms in the ADALINE update

function encourages such weights to converge to zero and

ultimately be eliminated.

Figure 3 shows that the two lower-order bits of a PC address

(bits 2 and 3) contain important information, as indicated by

their higher-weight color values. Thus, passing on these bits

to the signature function yields a high chance of preserving

information to reduce aliasing. In our proposed CHIRP policy

described in Section IV, we keep these two correlated bits in

the global path history.

B. Modeling Efficient Signatures

Aliasing in the prediction table is harder to solve in the

TLB than caches. With TLB reuse prediction, far too many

PCs map to the same TLB entry, i.e., 64 times more than to

a cache block. The problem of aliasing is exacerbated further

with large footprint applications.

If a counter in the prediction table changes direction

frequently due to aliasing, the same problem will only be

exacerbated with a smaller table size. To achieve high reuse

prediction accuracy with a smaller table size, we have to solve

aliasing first.

This problem can be addressed by coordinating how the

input bits are transformed by designing a succinct signature.

We found that employing shifting and scaling techniques as

described by Lecun and Hinton [70], [71] improves prediction

accuracy.

We accomplished this by injecting and shifting leading

zeros into specific bit positions of different components of

the signature including the global path history, conditional

branch history, indirect branch history, and the shifted PC of

the access (section IV).

Doing this both shifts the individual PCs and scales the

less salient history bits down to make them less visible to

the learning process, allowing the prediction table to converge

to an accurate counter value with 3 times fewer entries than

GHRP.

The above techniques of shifting and scaling the signature

bits are simple to implement in hardware and provide significant

reduction in TLB MPKI. Figure 6 shows that while adding

conditional branch path history to the signature would reduce

MPKI by 23.88%, adding two leading zeros in the path history

would allow the effect of conditional branch history to reduce

MPKI by 26.98%.

In the next section we discuss our signature function and

the individual effect of above optimizations.

IV. CONTROL-FLOW HISTORY REUSE PREDICTION

ALGORITHM

A. Overview

CHIRP correlates TLB replacement with reuse history.

CHIRP uses features that best correlate to reuse behavior

and combines them into a signature that is used to uniquely

tag each TLB entry (IV-B).

This signature is subsequently used to track the reuse

behavior of the associated TLB entry by means of a prediction

table indexed by the signature (IV-C). The prediction table is

updated on an eviction or a reuse, and the resulting prediction

status is written back into the corresponding TLB entry to

inform the next TLB replacement operation (IV-D). Figure 4

describes the main components of CHIRP and Algorithm 5

provides the CHIRP algorithm.

B. CHIRP Signature

CHIRP contributes four features that correlate with reuse

behavior. The first is the global path history of PCs. The global

path history in CHIRP is 64 bits wide and is updated on each

access by shifting the two lower-order bits of the PC into the

path history, followed by two zero bits (Figure 5, line 28), as

previously discussed in subsections III-A and III-B, respectively.

The global path history in CHIRP allows recording the last

16 accesses.

The second and third features are the conditional and

unconditional indirect branch address history, respectively. Each

of these histories is 64 bits and is updated by shifting the

eight bits of the PC [11:4] into the branch history on every

conditional (resp. unconditional indirect) branch instruction

(Algorithm 5, line 31.), recording the last 8 branch accesses

for each type.

The fourth feature is the current PC, shifted right by two bits.

The signature is constructed by XOR-ing the global path history

with the conditional branch history, the unconditional indirect

branch history, and the shifted PC of the access (Figure 5,

line 5).

To compute indices into the prediction table, CHIRP

computes a 16-bit hash of the constructed signature. For

hashing, we first use Robert Jenkins’ 64-bit mix function [72].

The mix function enables a single-bit change in the key to

influence widely disparate bits in the hash result. We then
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Fig. 4. CHIRP TLB metadata and prediction table update flow using a signature.

1: int predTable[numCounters]
2: procedure ACCESSTLB(int VA)
3: set ← calcSet(VA)
4: isMissed ← isTagMatch(VA)
5: sign ← VA»2 ⊕ pathHist ⊕ condBrHist ⊕ unCondBrHist
6: index ← Hash(sign) mod 216

7: cntrNew ← predTable[index]
8: if isMissed = true then � miss
9: entry ← victimEntry(set)

10: if entry.isDead = false then � lru
11: index ← Hash(entry.signature)
12: updatePredTables(index, true)

13: entry.firstHit = true � insertion
14: else � hit
15: entry ← matchedEntry(set, tag)
16: if entry.firstHit = true then � access table
17: indices ← Hash(entry.signature)
18: updatePredTables(index, false)
19: entry.dead ← predict(cntrNew, deadThresh)
20: entry.firstHit ← false
21: entry.signature ← sign
22: updateLRUstackPosition()
23: UpdatePathHist(VA, pathHist)
24: if instType = conditionalBranch then
25: UpdateBrHist(VA, condBrHist)
26: if instType = unConditionalBranch then
27: UpdateBrHist(VA, uncondBrHist)

28: procedure UPDATEPATHHIST(int VA, int history)
29: history ← history << 4
30: history ← (history | VA2..3)

31: procedure UPDATEBRHIST(int VA, int history)
32: history ← history << 8
33: history ← (history | VA4..11)

34: procedure PREDICT(int counter, int threshold)
35: if counter > threshold then return true
36: else return false

37: procedure VICTIMENTRY(Set set)
38: for int i = 1 to associativity do
39: entry ← set.entries[i]
40: if entry.isDead = true then return entry

return LRUentry()

41: procedure UPDATEPREDTABLE(int index, bool Dead)
42: if Dead = true then
43: predTable[index]++
44: else
45: predTable[index]−−

Fig. 5. CHIRP algorithm.

take the modulo of the table size to generate the hash table

index(Figure 5, line 6).

Note that the signature relies on bits from the branch PC,

not conditional branch outcomes or bits from branch targets.

C. CHIRP Prediction Table

CHIRP stores metadata for each L2 TLB entry, consisting of

3 LRU stack position bits, a valid bit, a 16-bit signature and a

prediction bit (See Figure 4, Updating TLB Metadata). CHIRP

uses a table of saturating counters to provide a prediction.

The table is indexed by a hash function of the signature. The

corresponding counter is thresholded, and if the counter exceeds

the threshold, the entry is predicted as dead.

D. CHIRP Operations

In contrast to SHiP and GHRP that require updating the

prediction table on each TLB access, the bulk of CHIRP

operations occurs off the TLB critical path, with minimal

impact to TLB latency. In particular, CHIRP updates its

prediction table on a TLB miss only if the selected victim is

LRU (i.e. no dead entry is found).

The operations pertaining to a TLB miss involve (1) selecting

a victim, (2) updating the victim’s reuse history in the prediction

table if the victim is LRU, and (3) updating the prediction

metadata for the new TLB entry.
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a) Victim selection

On a TLB miss, CHIRP first attempts to select a victim

among the entries predicted as dead. If no such entry is found,

CHIRP evicts the LRU entry (Figure 5, line 37).

b) Prediction table update

Because CHIRP updates its prediction table only if the

victim is LRU (Figure 5, line 10 – 12), evicting the LRU entry

effectively makes it a dead candidate the next time around.

This justifies why the prediction table needs be updated. The

signature of the victim entry is used to index the prediction

table and the corresponding counter is incremented, since the

entry was just shown to be dead (Figure 5, line 41).

c) Prediction metadata update

After the new entry is inserted into the TLB, its CHIRP

metadata is updated to inform CHIRP of the next replacement

decision. First, the signature of the new entry is used to index

the prediction table and then the corresponding counter is read

out (Figure 5, line 6). The counter value is thresholded and

used to decide if the incoming entry should be predicted dead

or live in the future. The resulting prediction status is then

used to update the prediction bit in the CHIRP metadata.

On a TLB hit CHIRP updates its prediction table only if the

current access is the first hit to the TLB entry line 16). These

optimizations improve both performance and energy as they

reduce the frequency of access to the CHIRP prediction table

to only 10.14% of all TLB accesses (Figure 11). In addition, for

smaller prediction tables, they prove very effective at improving

MPKI by reducing aliasing (Figure 9). These optimizations

and results are discussed in detail in Section VI).

A TLB hit (Figure 5, line 14) involves the following

operations:

d) Prediction table update

On a hit the prediction table is accessed only on the first

access or reuse (Figure 5, line 16). The old signature in the

entry (Figure 5, line 17) is used to index the prediction table

and the corresponding counter is then decremented to assure

this entry will be predicted as live under the same conditions

in the future (Figure 5, lines 18 and 41). Then the old signature

is replaced with the new one.

e) Prediction metadata update

The new signature of the hitting entry is used to index the

prediction table and then the corresponding counter is read

out. The counter value is thresholded and used to decide if

that entry should be predicted dead or live in the future. The

resulting prediction status is then used to update the prediction

bit in the CHIRP metadata. Figure 5 summarizes the steps

taken during a TLB hit.

E. Adapting Training Algorithm for TLB

Access to a TLB reuse predictor must be fast and energy

efficient, as the TLB is on the critical path to accessing memory.

Thus, we are motivated to minimize the number of updates

made to prediction structures. We find that two specific events

are sufficient for an accurate training update:

• The first hit of an entry.

• A miss in a set with no dead entry (this leads the algorithm

to choose an entry to evict based on LRU.)

With this technique, CHIRP reduces the access ratio to the

prediction tables by 90% compared to SHiP and GHRP (see

Figure 11), which must access tables on every access to the

TLB.

Component Size
Prediction bits 1 bit × 1024 = 128B
FirstHit bits 1 bit × 1024 = 128B
Signature bits 16 bits × 1024 = 2KB
Path history register 64 bit × 1 = 8B
Cond. history register 64 bit × 1 = 8B
Uncond. history register 64 bit × 1 = 8B
Counters 128B .. 8KB
Total 2.775KB .. 8.265KB

TABLE I
STORAGE OVERHEAD OF CHIRP FOR A 1024 ENTRY, 8-WAY L2 TLB WITH

4KB PAGES.

Processor Parameter
L1 i-Cache 64KB, 8 way, 4 cycles
L1 d-Cache 64KB, 8 way, 4 cycles
L2 Unified Cache 256KB, 16 way, 12 cycles
L3 Unified Cache 8MB, 16 way, 42 cycles
DRAM 240 cycles
Branch Predictor Hashed perceptron, 4K

entry BTB, 20 cycle
miss penalty

L1 i-TLB 64 entry, 8 way, 1 cycle
L1 d-TLB 64 entry, 8 way, 1 cycle
L2 Unified TLB 1024 entries, 8 way,

8 cycle hit latency, 20 to
360 cycle miss penalty

TABLE II
SIMULATION PARAMETERS

V. METHODOLOGY

To implement and test CHIRP, we use the simulator and

traces released for the recent Championship Value Prediction

Competition (CVP1) [69]. There are hundreds of traces

available (of which we use 870), coming from a variety of

workload categories of interest to Qualcomm who provided

them. In particular, the workloads come from the team

working on their (now defunct) server project. The traces

contain SPEC, database, crypto, scientific, web, “big data”

and other applications, many of which exhibit interesting

address translation behavior. The traces contain very detailed

information such as instruction type, register values, effective

addresses of loads and stores, and data values, making them

suitable to drive a performance simulator. Short traces are

simulated completely, while long traces are allowed to run for

100 million instructions. To measure the performance numbers
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we built a timing-approximate performance model similar to

previous work [37].

Our model simulates first-order sources of processor latency

such as the memory hierarchy composed of L1 i-TLB and

L1 d-TLB, L1 i-cache, L1 d-cache, L2 and L3 unified caches,

DRAM, a branch prediction unit that includes an indirect

branch predictor, a conditional branch predictor with branch

target buffer, and an in-order pipeline model. We use a hashed

perceptron predictor as the branch direction predictor [73].

We measure misses per 1000 instructions (MPKI) as well

as instructions per cycle (IPC) based on the simulated mi-

croarchitecture across a variety of page table walk latencies

derived from previous work. A recent reverse engineering study

on TLB [27] reported a range of L2 TLB miss penalties for

Intel microarchitecture: 230 cycles for Coffeelake, 272 cycles

for BroadwellXeon, 212 cycles for Skylake and 18 cycles for

Haswell. A related study on TLBs, Li et al. [12], uses 150

cycles for L2 TLB miss penalties. We measure speedup for

a range of 20 to 340 cycles page walk latencies, shown in

Figure 10.

We model static re-reference interval prediction (SRRIP),

signature-based hit prediction (SHiP), global history reuse

prediction (GHRP) and control-flow history reuse prediction

(CHIRP). CHiRP keeps metadata for each L2 TLB entry.

CHiRP also uses one prediction table. Each of the entries in

the table contains a two bit counter. The additional metadata

for each entry consists of 1 prediction bit, 3 bits to maintain

LRU positions, and 16 bits of signature. Table-I summarizes

the storage requirements for CHiRP for a 1024-entry 4KB

page size L2 TLB with 8-way associativity.

We assume a 4KB page size similar to previous work [12].

Large pages are supported in current microarchitectures, e.g.
Intel’s Skylake supports page sizes of 4KB, 2MB, 4MB, and

1GB. Large pages can reduce capacity misses in TLBs when

program behavior exhibits high locality. However, 4KB pages

are still the norm for most mobile and desktop operating sys-

tems, providing a good balance between impact of page faults

for workloads with good locality and impact of fragmentation

for workloads with poor locality. It would be easy to say, “just

use large pages” but the performance of legacy systems, mobile

apps, cloud computing workloads, etc. that continue to use

4KB pages matters to users of those systems.

The complexity of variable-sized TLB entries (as compared

to fixed-sized lines in cache replacement) further complicates

efforts to improve TLB replacement. Entries for different sized

pages share the L2 TLB; as the L2 TLB is built for capacity,

it is not partitioned among page sizes.

Reasoning about how to do replacement with a mix of page

sizes is an interesting problem we plan to tackle in future

work; imagine, when one entry covers 4KB and another covers

2MB, which one is is more important to keep? It is no longer

a matter of pure replacement in the sense of trying to achieve

Bélády’s optimal result [74], but now requires taking into

account the different costs of replacing different sized entries

[75], [76], [77], [78]. This question is beyond the scope of this

initial study. In addition, large pages’ susceptibility to memory

fragmentation requires simulating traces with varying levels

of known fragmentation behavior, complicating an already

complex issue. We hope this initial work invites the community

to consider and tackle the problem of TLB replacement further

from the surface work seen so far. Thus, in this initial study

of predictive replacement policies for TLBs, we focus on the

standard 4KB page size.

VI. RESULTS

In this section, we describe the results of experiments

simulating the CHIRP policy and demonstrate its superior

over policies used in previous work. Results with a range

of hardware budgets are presented. In the absence of public

data about L2 TLB size, our calculation accounts only for

tag, physical page number, replacement metadata, protection

bits, valid bit, and ASID, estimating 118 bits for a TLB entry,

giving 14.75KB for a 1024-entry TLB. A 6% TLB overhead

places CHiRP overhead of 1KB, which still offers a 28% MPKI

improvement (see Figure 9).

A. MPKI Results

Figure 7 shows an S-curve of MPKIs for 870 benchmarks.

The x-axis shows the benchmarks in order of sorted MPKI for

LRU and is compared with other policies. Insets highlight key

areas of the graph.

LRU and Random yield an average 1.51 and 1.47 MPKI,

respectively. SRRIP, which uses a simple static prediction

on each TLB entry placement and has a lower cost than

LRU, yields 1.35 MPKI, a 10.36% improvement over LRU.

SHiP, a PC-based reuse predictor, gives an average 1.50 MPKI,

performing almost the same as LRU with 0.88% improvement.

GHRP, which uses a more detailed prediction signature, yields

an average 1.37 MPKI, or a 9.03% reduction in misses over

LRU. CHIRP, with a signature specially designed for TLB

replacement, gives an average MPKI of 1.08% an improvement

of 28.21% over LRU. Nearly all of the tested benchmarks

exhibit considerable MPKI reduction under CHIRP, achieving

an improvement of 58.93% in some cases.

These results demonstrate that the case for LRU as a TLB

replacement policy is weak, as even Random replacement

slightly outperforms it. SRRIP, which is a simpler and low-

overhead policy, could more conveniently be deployed in

current processors, yielding better performance. CHIRP is

somewhat more complex but yields the best improvement,

more than double the improvement provided by SRRIP.

B. Accesses to Prediction Table

Predictive replacement policies often access tables of coun-

ters to make a prediction. Previous work on cache and BTB

replacement policies read out from the tables on every access

to the cache/BTB to make a prediction for the next access. The

tables are also modified frequently as counters are updated.

CHIRP only accesses the prediction table on a TLB miss

or on a hit to a TLB set different than the one accessed last,

following our selective hit update policy. It follows from this

that consecutive hits to the same set do not result in writing

or reading from the prediction table but only updates to the
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Fig. 6. Effect of correlating features, transforming input, shifting PC bits and scaling, signature formula and prediction table update policies on reducing
misses in the L2 TLB. The x-axis is the reduction rate of average MPKI over 870 traces over a baseline LRU. Previous predictive replacement policies need
specific optimizations to work for L2 TLB. Results show the advantage of CHIRP.p p g

Fig. 7. MPKI comparison of various policies. The horizontal axis shows the benchmarks in the order of sorted MPKI for LRU. Multiple zoomed-in areas of
the graph are shown in insets.

signature in the TLB entry. Updating the signature bits in the

TLB entry has the same overhead as an LRU stack update. Thus,

the energy and timing properties of CHIRP are considerably

more favorable to implementation than techniques based on

previous predictive replacement policies.

Figure 11 shows a density plot of the rate of the number

of accesses to prediction table over accesses to the TLB for

SHiP, GHRP and CHIRP. The plot shows the distribution of

access rates over all the benchmarks. For SHiP and GHRP,

the access rate has a very high variance, reaching over 100%

in many cases. The rate can exceed 100% because, for every

TLB access, there could be two accesses to the prediction

table: one to read out the prediction, and another to update the

table for training. For CHIRP the access rate is quite low, and

has low variance, making for a far more practical policy for

implementation. On average CHIRP accesses the prediction

table for 10.14% of the accesses to L2 TLB.

C. Speedup

Figure 8 shows speedup for various policies with TLB miss

penalty of 150 cycles. Page walk latency depends on several

microarchitectural and software parameters. Thus, we explore

a range of L2 TLB miss penalties to provide an estimate

of performance under different assumptions. With TLB miss

penalty of 150 cycles, CHIRP improves performance by 4.80%

compared to 0.42% for Random, 1.65% for SRRIP, 0.13%

for SHiP, and 0.94% for GHRP. At higher latencies, the

advantage of predictive policies grows. With a penalty of 320

cycles, representing more memory intensive behaviors, CHIRP
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provides a speedup of over 10%. Other predictive replacement

policies do not provide significant speedup. Clearly, CHIRP

provides significant improvement to performance over all other

replacement policies.
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Fig. 8. Speedup for 870 traces.

D. TLB Efficiency

Cache efficiency is the average amount of time in which a

block was live in the cache. We calculate cache efficiency [79]

for TLB entries instead of cache blocks. Figure 1 depicts cache

efficiency for the L2 TLB for 870 benchmarks. Each row is the

cache efficiency of one benchmark for various policies scaled by

LRU. Benchmarks are sorted from low to high cache efficiency

from down to up respectively. Figure 1 shows Random helps

improve the cache efficiency of some benchmarks (most which

had high efficiency already) but CHIRP removes most of the

dead entries in TLB for all 870 benchmarks. CHIRP improves

average cache efficiency over 870 traces by 8.07% compared

to LRU. This number is 2.92% for GHRP, 1.85% for SHiP,

2.84% for SRRIP, and 3.10% for Random. Thus, the MPKI

improvement in CHIRP comes from reducing dead entries and

increasing live entries in the TLB.

E. Complexity and Efficiency

Note that CHIRP is more complex than simple replacement

policies such as LRU and RRIP. However, it is far less

complex than, for example, branch prediction techniques such

as TAGE [80] and perceptron [81] that have been implemented

in recent processors. These predictors require far more logic,

dynamic energy, and state than CHIRP and have tighter timing

constraints. Thus, we believe the complexity of CHIRP is very

manageable given its benefits to front-end performance.

Consistent with branch predictor implementation, CHIRP

only updates the tables of counters at commit with right-path

branches to prevent pollution of the tables. For misprediction

recovery, CHIRP maintains two path histories: the speculative

history updated using the outcome of the branch predictor, and

a non-speculative history updated when a branch commits.

The energy overhead of predictive policies results from

accesses to the prediction table and updating respective

metadata in the TLB entry. Because CHIRP reduces the number

of accesses to the prediction table by 90% compared to previous

predictive policies (e.g. SHiP and GHRP), energy consumption

related to accessing the tables should be less of a concern

(Figure 7).
CHIRP requires more accesses to the prediction metadata in

the TLB compared to SHiP. While SHiP only updates metadata

at insertion time, CHiRP updates the signature in the TLB

during both hit and insertion. CHIRPupdates the metadata in

the same manner as updating LRU bits. While SHiP cannot

perform better than LRU for the L2 TLB, updating the metadata

on every access is the cost for an accurate predictor.
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Fig. 9. MPKI improvement over LRU for CHIRP with a range of prediction
table sizes.

F. Impact of Predictor Size

Figure 9 shows MPKI improvement over LRU for CHIRP

with a range of prediction table sizes. The size of the prediction

table has an impact on area, energy, and timing, so we would

like to choose a size that yields a good improvement while

maintaining a reasonable cost. At a very small hardware budget

of 128B, we note that even though we may experience higher

conflicts rate in the prediction table, CHIRP still yields up to

7% MPKI improvement over LRU. As we double the prediction

table size to 256B and 512B, the MPKI improvement increases

to up to 20% and 22%, respectively. What this shows is that

even with a small hardware budget size of 256B, CHIRP

doubles the MPKI improvement realized by an 8K GHRP

(9%). Table sizes of 1K and 2K yield similar improvement:

about 28% MPKI reduction; our main results are presented

with a 1K budget. Gains realized by larger table sizes are

higher, but come with larger area overhead.

G. Performance Gain

This first study focuses on single core. IPC gains in each

generation are usually within 10-15%, of which 20-40% might

come from the front-end (2-4% overall), which is considered

aggressive. A 4.8% improvement over LRU is a significant

milestone in this case. Figure 11 shows the speedup for CHIRP

is statistically significant over 870 workloads assuming a TLB

miss penalty of 150 cycles.
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H. Area Overhead vs. Performance

CHIRP reduces hardware overhead by two-thirds compared

to GHRP because the signature formula enables CHIRP to

use one prediction table rather than the three needed by GHRP.

The predictor cost was evaluated for a range of extra overhead.

Figure 9 shows even a small 256B predictor leads to a 20%

MPKI reduction. As a matter of comparison, a recent study

from Intel [82] demonstrates a branch prediction technique

that costs 64KB hardware overhead improves IPC by 2.7%.

CHIRP for a TLB with 1KB overhead and 4.80% speedup is

13× more efficient in terms of speedup-per-KB overhead. This

is due to the high TLB page walk latency compared to other

miss penalties in the pipeline.

     CHiRP
     GHRP 
       SHiP
    SRRIP
  Random

Fig. 10. Average Speedup for a range of L2 TLB miss penalties over 870
traces.

VII. RELATED WORK

A. Reuse Prediction

This paper proposes reuse prediction for TLB replacement.

However, reuse prediction has a long history in the literature.

Caches often retain dead blocks, i.e. blocks in the cache that

will not be used again until they are evicted [60]. Dead blocks

waste space and energy in the cache. Lai et al. initially proposed

dead block prediction [60] to prefetch data into predicted dead

blocks. Kharbutli et al. propose a counter-based dead block

prediction approach [83] for replacement and bypass. Liu et
al. [84] propose a predictor leveraging the burst-like nature of

accesses to the L1 cache. Teran et al. propose using perceptron

learning for reuse prediction [54], [63].
Dead block prediction has been evaluated in the context of

making replacement decisions in the L1 data cache [3], [53],

[54], [60], [63], [84], last-level cache [3], [84], [85], prefetch-

ing [60], [86], bypassing [87], [88], [89], [90], [91], [92], [93],

[94], [95], [96], [97], [98], [99], power reduction [100], [101],

and cache coherence protocol optimization [102], [103], [104].

However, no replacement policy has been proposed for the

TLB based on dead block prediction.
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B. Translation Lookaside Buffers

Previous work shows that superpages, i.e. any page size

larger than the default, can increase TLB reach and reduce TLB

misses. Large pages are especially beneficial for applications

with a hard upper bound of memory usage in terms of maximal

heap size [43], [44], [45], [47], [48], [105], [106]. Still, Peng et
al. [43] show that while superpages can remove nearly all the

TLB miss overhead of some benchmarks, an increased page

size of 1MB cannot cover the working set of some benchmarks

due to unpredictable memory access patterns. If memory access

patterns are predictable, TLB misses can be reduced through

prefetching and speculation [10], [34], [49], [50], [51].

Conversely, using superpages may unnecessarily increase

the memory footprint of an application, resulting in elevated,

but useless, paging traffic and memory allocation. Additionally,

handling multiple page sizes increases complexity in the

operating system [44], [45], [46], [47], [107], [108]. Algorithms

to evaluate the need for larger pages based on applications’

behavior are essential for choosing the appropriate page size.

Techniques for mapping multiple smaller pages into a single

superpage TLB entry [37], [45], [56], [57], [109] reduce

splintering and make superpage usage more efficient, but

require deep OS-hardware co-design.

With the prevalence of chip multiprocessors (CMPs) and

parallel workloads, recent TLB work has focused on distributed

TLBs in architectures. Cooperative TLB [36], [110] and shared

last-level TLB [39], [51], [55] schemes have been proposed.
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VIII. CONCLUSIONS AND FUTURE WORK

This paper extensively investigated the replacement policy

of TLBs, which has been rarely studied in previous work. In

the past, the only way to provide a predictive policy for larger

cache structures was to use a sampling method. We show that

sampling does not work in the L2 TLB. The idea of sampling

is to generalize learning over sets; we used the granularity

of L2 TLB entries to generalize learning instead of sampling.

Prior work does not recognize the effect of the granularity

of a structure on sampling and dead block prediction. The

signatures of previous policies do not detect dead blocks in

the L2 TLB. Because they do not follow control flow, it was

impossible for them to learn the reuse patterns in the L2

TLB properly. They end up averaging over traces, whereas

we present a specific signature that tracks the trace of dead

blocks in a large granularity environment while minimizing

the prediction counters’ fluctuations. That allows CHiRP to

use a small table with fast convergence, providing a predictive

replacement policy that fits into constraints of the L2 TLB for

the first time. In future work we plan to extend CHIRP to

TLBs with mixed page sizes.
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