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Abstract—Modern processors support instruc-
tion fetch with the instruction cache (I-cache)
and branch target buffer (BTB). Due to timing
and area constraints, the I-cache and BTB must
efficiently make use of their limited capacities.
Blocks in the I-cache or entries in the BTB that
have low potential for reuse should be replaced
by more useful blocks/entries. This work explores
predictive replacement policies based on reuse
prediction that can be applied to both the I-cache
and BTB.
Using a large suite of recently released indus-

trial traces, we show that predictive replacement
policies can reduce misses in the I-cache and
BTB. We introduce Global History Reuse Predic-
tion (GHRP), a replacement technique that uses
the history of past instruction addresses and their
reuse behaviors to predict dead blocks in the I-
cache and dead entries in the BTB.
This paper describes the effectiveness of GHRP

as a dead block replacement and bypass optimiza-
tion for both the I-cache and BTB. For a 64KB set-
associative I-cache with a 64B block size, GHRP
lowers the I-cache misses per 1000 instructions
(MPKI) by an average of 18% over the least-
recently-used (LRU) policy on a set of 662 in-
dustrial workloads, performing significantly bet-
ter than Static Re-reference Interval Prediction
(SRRIP) [1] and Sampling Dead Block Prediction
(SDBP)[2]. For a 4K-entry BTB, GHRP lowers
MPKI by an average of 30% over LRU, 23% over
SRRIP, and 29% over SDBP.

I. Introduction

Modern processors rely on efficient instruction
fetch to keep the pipeline fed with right-path in-
structions [3], [4]. To maintain that stream of in-
structions, the front-end relies on structures such
as the instruction cache (I-cache) and branch target
buffer (BTB). The I-cache stores blocks of recently
used instructions, improving instruction throughput
and latency. The BTB caches targets of previously-
taken branches to minimize target re-computation
latency [5]. Because of timing and area constraints,

these structures require efficient organization and
management to achieve high caching accuracies and
speed.

Fig. 1. Heat map illustrating cache efficiency [6] of a 16KB
8-way I-cache using five replacement policies for a given trace.
Lighter pixels represent longer live times.

A block is said to be live in a cache if it will be
used again before it is evicted. A block is dead if it
will not be used before evicted. Much recent work in
data caches relies on predicting and replacing dead
blocks. This paper explores such predictive policies
for the I-cache and BTB.
Figure 1 illustrates the cache efficiency [6] of a

16KB instruction cache using several replacement
policies. Cache efficiency is the fraction of time a
block is live in the cache. Each pixel represents a
cache block in an 8-way set-associative, 16KB I-cache
with each row corresponding to one set. Clearly,
the replacement policy has a large impact on cache
efficiency. Our proposed replacement policy, Global
History Reuse Prediction, results in significant im-
provements in cache efficiency that translate into
improved performance.

A. Instruction Cache and BTB Management
Most literature on I-cache management has fo-

cused on either prefetching techniques [7], [8], [9],
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[10], [11], [12], or software-based techniques [13],
[14], [15], [16], [17], [18], [19] to increase I-cache
performance. However, very little work has been done
on developing and evaluating replacement policies
expressly for the I-cache. Smith and Goodman [20]
evaluate replacement policies for the I-cache but,
due to the earliness of the work, analyze nascent
policies like first-in, first-out (FIFO), least-recently-
used (LRU), and random replacement. We find very
little work on high-performance BTB replacement
policies, although we know through private commu-
nications that industry is very interested in good
BTB replacement.
To improve replacement policies in the I-cache

and BTB, we look to recent work in data cache
replacement [2], [21], [1], [22], [23], [24]. A key idea
in recent work is that sequences of recently accessed
instructions correlate strongly with the likelihoods
of block reuse. Training a predictor on control-flow
traces based on sampled sets yields a high reuse
prediction accuracy. We find this correlation holds
within both I-cache and BTB, but due to the na-
ture of instruction streams, the current literature’s
sampling approaches are unsuitable as we will see in
Section II-A. In response to this analysis, we develop
Global History Reuse Prediction (GHRP), a block
replacement technique for the I-cache and BTB that
can predict the reuse behaviors of the entries in these
components.

B. Contributions
The contributions of this paper are:
1) An exploration of techniques for I-cache and
BTB management using a set of over 600
industry-sourced workloads recently released
through the Fifth Championship Branch Pre-
diction Competition [25].

2) Evaluation of replacement policies adapted
from recent work on data cache management
to demonstrate their potential for improving
I-cache and BTB hit rates. In particular, we
explore whether using sampling-based policies
benefit I-cache replacement. We compare these
results to LRU as well as Static Re-reference
Interval Prediction (SRRIP) [1].

3) Based on the analysis of the reference pat-
terns of I-caches and BTBs, we describe why
sampling-based policies like SDBP fail to pre-
dict dead blocks/entries. We thus propose
Global History Reuse Prediction, a replacement

policy for both the I-cache and BTB that ex-
ploits these reference pattern behaviors.

II. Background and Motivation

We have not found much recent work on the
impact of replacement policy on BTB performance
beyond the work of Perleberg et al. [26]. New mobile
and server workloads motivate us to take a fresh look
at this area. As we explore I-cache design, exploring
the BTB alongside it is a natural extension of our
work.

A. Sampling-Based Dead Block Prediction is Unsuit-
able
Our original intent was to apply PC-based dead

block predictors such as SDBP and SHiP to instruc-
tion caches and BTBs. These predictors use set-
sampling [22], [2], [21] to generalize the behavior of
accesses to a small number of cache sets over the
entire cache. For example, SDBP can yield a good
speedup from sampling only 32 of the 2,048 sets of
a 2MB last-level cache. We expected to see good
performance improvements for the I-cache and BTB
as well, but were surprised that the results were
disappointing. In retrospect the reason seems obvious
but we will explain it here. PC-based predictors
exploit the observation that, if a block in the data
cache is accessed by a given PC and becomes dead,
other blocks accessed by the same PC in other sets
are likely to become dead as well. Set-sampling allows
the predictor to learn from only a small number of
sets, allowing the metadata store to be very small.
Unfortunately, instruction streams do not allow for
set-sampling in this way since the PC itself forms the
index into the I-cache or BTB. Thus, set-sampling
cannot generalize behavior on a small number of
sets over the entire structure, as a given PC only
accesses one set. Figure 2 illustrates this difference.
Hereafter, we evaluate SDBP for I-cache and BTB
with a sampler the same size as the cache, to avoid
this inability to generalize.

B. Dead Block Prediction
It has been observed that caches often retain dead

blocks, i.e. blocks in the cache that will not be used
again until they are evicted [27]. Dead blocks waste
space and energy in the cache. Dead block predic-
tion has been evaluated in the context of making
replacement decisions in L1 Data cache [27], [28],
Last level cache [2], [28], [29] and prefetching [27],
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Fig. 2. Set-sampling for PC-based dead block predictors does not work for I-cache or BTB. For an 8-way, 16-set data cache
(a), it is sufficient to sample the first two sets to generalize behavior over the entire cache. For an 8-way, 16-set I-cache or BTB
(b), one PC accesses only one set, so the behavior of all sets must be measured. Hereafter SDBP is modeled sampling all cache
sets.
[30], bypassing [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41], [42], [43], power reduction [44], [45],
and cache coherence protocol optimization [46], [47],
[48]. Note that no cache replacement policy has been
proposed for I-cache or BTB based on dead block
prediction.
Lai et al. propose a trace-based dead block pre-

dictor [27] used to prefetch data into predicted dead
blocks and thus improve prefetching and replacement
decisions for the L1 data cache. In this technique, a
trace of instruction addresses that make reference to
a block is summarized in a block signature associated
with that block. The signature is used to index
a table of saturating counters. The corresponding
counter is incremented when a block is evicted and
decremented when a block is reused, thus keeping
track of the tendency of an instruction trace to lead
to a dead block.
Kharbutli et al. propose a counter-based dead

block prediction approach [23] to drive cache replace-
ment and bypassing. Each cache block is associated
with a counter keeping track of the number of ac-
cesses to a block before it is evicted. The live time
and access time of a block are tracked using Live time
(LvP) and access time predictor (AIP). When the
counter reaches a threshold, the block is predicted as
dead. Blocks predicted dead on their first access are
bypassed to the L1 cache.
Hu et al. propose timekeeping techniques [30] that

can be used to predict dead blocks by learning num-
ber of cycles a block is accessed. A block is considered
dead if it is not accessed twice the number of cycles.
Virtual Victim Cache [29] uses a dead block predictor
to reuse dead regions of the cache as a victim cache,
effectively reducing conflict and capacity misses.
Liu et al. [28] propose dead block prediction based

on cache bursts, i.e., repetitive accesses to the most-
recently-used (MRU) position. In this scheme, the
prediction is made when a block becomes non-MRU.
Sampling-based Dead Block Prediction

(SDBP) [2] uses only the address (PC) of the
most recent instruction, allowing it to be useful in
the last-level cache and eliminating the need to store
signatures with blocks. In this method, a predictor
learns the pattern of accesses and evictions from a
small number of sets. There is also some work [49],
[50] on software-based learning, in which hints from
the compiler are learned to predict dead block
information.
Our policy is the first to use dead block prediction

in the I-cache and BTB. We compare it with the
state of the art replacement policies LRU, SRRIP [1],
SBDP [2].

C. Static Re-reference Prediction(SRRIP)
SRRIP [1] keeps track of the recency of blocks by

predicting blocks that will be re-referenced again in
the cache. Each block is associated with a two-bit
re-reference prediction value. An initial prediction is
made on block placement and revised when a block
is reused or replaced.

D. Hashed Perceptron Branch Predictor
Alongside the I-cache and BTB, we need a highly

accurate branch predictor. We have used a hashed
perceptron branch predictor [51] that merges the
concepts behind the gshare [52], path-based [53] and
perceptron branch predictors [54]. The main idea
is that the one-to-one correlation of weights to the
number of history bits in a perceptron is not nec-
essary. The hashed value of a history of instruction
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addresses is used in combined with global branch out-
come to index the weight tables. Perceptron-based
branch predictors are used in high-performance ARM
processors from Samsung [55] as well as processors
from AMD and Oracle [56], [57].

E. I-Cache Optimizations
Previous work on I-cache management has focused

on instruction prefetching [7], [8], [9], [10], [11], [12],
code placement optimization [13], [14], [15], [16], [17],
[18], [19], and basic block reordering [58]. Prefetching
schemes [7], [8], [9], [10], [11], [12] focus on keeping
a record of committed instruction streams, which
better predict future control transfers and accesses
to instruction blocks. Work on cache block align-
ment [58] and other software solutions [13], [14], [15],
[16], [17], [18], [19] help minimize conflict misses and
improve locality within the I-cache.
Several proposed solutions incur a large hardware

overhead. For example, Shift [10] has 240KB storage
overhead (750% of I-cache capacity) just for the
index table, compared to 5KB of GHRP overhead
for a larger I-cache. Similarly, some previous work
explores unrealistically low associativities resulting
in higher MPKI, while we model a realistic I-cache
from the Samsung Mongoose processor. Little work
has focused on evaluating and creating replacement
policies for the I-cache [20].

F. BTB Optimizations
Previous literature [59], [26], [60], [61], [62], [63]

on the BTB has focused on its design structure,
including the branch target selection algorithm, the
utilization of multi-level BTB organizations, and us-
ing different replacement policies. To reduce the bit
storage overhead in the BTB, Fagin et al. propose
an encoding scheme requiring the storing of partial
tags [64]. Kobayashi et al. [65] further the work
by also encoding target addresses’ higher-order and
lower-order bits separate tables. Other schemes for
the BTB [66], [67] attempt to better capture large
workloads by augmenting the effective BTB size via
secondary structures.

G. Joint I-Cache/BTB Management
Some previous work [11], [68] addresses the BTB

and I-cache design problem together. Kaynak et
al. [11] take advantage of in-common metadata to si-
multaneously prefetch blocks and branch instructions
into the I-cache and BTB, respectively. Similarly,

Rakesh et al. [68] propose a branch predictor-directed
prefetching strategy that also populates the I-cache
and BTB concurrently, however, without the need for
metadata. In this paper, we have focused on main-
taining efficient utilization of both the I-cache and
BTB by targeting the removal of dead blocks/BTB
entries.

Algorithm 1 GHRP
1: int cntrsNew[numPredTables]
2: int predTables[numCounts][numPredTables]
3: int indices[numPredTables]
4: procedure Access(int PC )
5: sign ← signature(PC, history)
6: indices ← ComputeIndices(sign)
7: cntrsNew ← GetCounters(predTables, indices)
8: set ← calcSet(PC, cache)
9: tag ← calcTag(PC, cache)
10: isMissed ← isTagMatch(PC, cache)
11: if isMissed = true then � miss
12: bypass ← majorityVote(cntrsNew, bypassThresh)

13: if bypass = false then
14: block ← victimBlock(set)
15: indices ← ComputeIndices(block.signature)

16: isDead ← true
17: updatePredTables(indices, isDead)
18: pred ← MajorityV ote(cntrsNew, deadThresh)

19: block.dead ← pred
20: block.tag ← tag
21: else � hit
22: block ← matchedBlock(set, tag)
23: indices ← ComputeIndices(block.signature)
24: isDead ← false
25: updatePredTables(indices, isDead)
26: pred ← MajorityVote(cntrsNew, deadThresh)
27: block.dead ← pred
28: block.signature ← sign
29: history ← UpdatePathHist(PC )
30: updateLRUstackP osition()

III. Global History Reuse Predictor

It is often the case that a majority of the blocks
in the last-level cache (LLC) are dead [2]. LLC dead
block predictors are adept at determining whether
a block is dead after its first access. However, their
accuracy declines for subsequent accesses. Because
common access patterns to the BTB and I-cache
tend to consist of multiple reuses before eviction,
current PC-based dead block prediction schemes such
as SDBP and SHiP are ill-fit for these structures
as explained in section II-A. An algorithm that
takes into account control-flow history should have
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Component Number of Bits
Prediction tables 3×4,096 entries×2 bit counters = 3KB
Prediction bits 1 bit×1,024 blocks = 128B
Signature 16 bits×1,024 blocks = 2KB
History register 16 bit×1 = 2B
Total 5.13KB

TABLE I
Storage overhead for GHRP for a 64KB, 8-way I-cache with 64B blocks

higher accuracy [27], [69]. While PC-based policies
can only efficiently predict dead blocks at insertion
time, Global History Reuse Predictor (GHRP) is
able to predict dead blocks more generally, either at
insertion or at the last reuse. The main steps taken
by GHRP are shown in Algorithm 1. We first propose
GHRP algorithm for I-cache replacement and present
results. Then we describe an enhancement for BTB
replacement that uses minimal extra overhead.

A. Signature formula in GHRP
Like previous dead block predictors, GHRP in-

dexes a table of counters with a signature gener-
ated from features correlated with reuse behavior.
The GHRP signature uses the global path history
of instruction addresses. Algorithm 2 line 1 shows
the steps of updating the global path history. To
update the global history, on every access we shift
the three lowest-order bits of the PC into the history
followed by one zero bit. The history register is 16
bits, allowing four previous accesses to be recorded.
The signature is constructed by exclusive-ORing the
history with the PC of the access to be predicted
(Algorithm 2 line 4) . The zero bits in the history
allow some of the PC bits to pass into the signature
unmodified, yielding a useful hash of the history and
PC. To compute indices into the prediction tables,
we compute three different 12-bit hashes of the 16-
bit signature with the function ComputeIndices in
Algorithm 2 line 7.

B. GHRP Prediction State
GHRP stores metadata for each I-cache block,

consisting of 3 LRU stack position bits, a valid
bit, a 16-bit signature and a prediction bit. Let us
consider a real-world example I-cache: the Samsung
Exynos M1 processor has a 64KB I-cache with 128B
blocks [55]. The extra metadata and prediction tables
of GHRP would impose an additional 5.13 KB of
metadata, or 8% of the capacity of the I-cache. All of
GHRP’s operations are off the critical path to hitting

Algorithm 2 Updating path history and computing
signatures
1: procedure UpdatePathHist(int PC, int his-
tory)

2: history← history<< 4
3: history← (history | PC0..2) mod 216

4: function Signature(int PC, int history)
5: int signature← history⊕PC
6: return signature mod 216

7: function ComputeIndices(int signature)
8: for i = 1 to numPredTables do
9: indices[i]←Hash(signature, i)
10: return indices

in the I-cache. The small additional area of GHRP
pays for itself in terms of reducing misses without
affecting hit latency.

Algorithm 3 Returns true if corresponding counters
are more than specified threshold in majority of
tables.

procedure MajorityVote(int[] counters, int
threshold)

intvote← 0
for i = 1 to numPredTables do

if counters[i] > threshhold then
vote← vote+1

if vote >= (numPredTables/2) then return
true

else return false

C. GHRP Predictor Table Indexing
GHRP uses three tables to provide a prediction

via majority vote. This technique is shown in Algo-
rithm 3. Each table is indexed by a distinct hash
function similarly to the three tables in SDBP [2].
The indexing step is shown in Algorithm 2 line 7
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and Algorithm 4. Each of the three corresponding
counters is thresholded. If two or more counters
exceed the threshold, the aggregate prediction is that
the entry is dead. SDBP also utilizes three tables
but aggregates the results via summation rather than
majority vote. We find majority vote [70] superior
to summation due to the nature of instruction cache
accesses versus LLC accesses: with a high threshold
and summation, SDBP is more conservative when
it decides to predict a block as dead. Aliasing in
the prediction tables leads to a lack of confidence
and less coverage, rather than costly LLC misses. In-
struction accesses are less likely to be dead, requiring
lower thresholds for reasonable coverage. Majority
vote avoids the effects of aliasing without needing
a high threshold, so coverage and accuracy can both
improve.

D. Accessing Predictor Table and Metadata in GHRP

On each access to the I-cache, the global path
history is used to make the signature (Algorithm 1
lines 5)(Algorithm 2 line 4). Next, the prediction
tables are indexed by hashing the signature. The
corresponding counters are read out from the arrays
(Algorithm 1 lines 6, 7, Algorithm 4 and Algorithm 2
line 7). Figure 4 illustrates the datapath for making
a prediction.

The prediction table needs to be accessed on each
access to I-cache because for each reuse the future
prediction for one block may vary as the global
history changes. Even if there were a hit during one
access the next accurate prediction for that block
may be dead. Thus, this prediction will be obtained
from the prediction table indexed by the signature
made with the current history and will be used to
update the prediction bit in I-cache. The fact that
the block received a hit during an access reveals
an information about its future reuses and so the
prediction table entry indexed with the old signature
will be updated. On a miss, the prediction bit of the
evicted block is updated with a prediction obtained
by indexing the prediction table with the current his-
tory. Reading from prediction table is also necessary
on each access to the I-cache to allow bypass.

}
hash1 hash2 hash3

> threshold
> threshold
> threshold

majority
vote prediction

signature

prediction tables

Fig. 4. Prediction datapath. Three hash functions of the signa-
ture index 3 tables to read 2-bit counters that are thresholded
to make predictions. Aggregate prediction is by majority vote.

Algorithm 4 Index prediction tables and get coun-
ters

procedure GetCounters(int[][] predTables,
int[] indices)

for t = 1 to numPredTables do
counters[t]← predTables[indices[t], [t]]

return counters[]

The counters are used to decide if the incoming
block should be bypassed or placed. In case of a miss,
the tables vote and decide to bypass the block if the
majority of the corresponding counters are above the
bypass threshold. If the vote is to bypass, there are
no more accesses to the prediction tables, and no
metadata is updated. On the other hand, if it was a
miss that is not bypassed (Algorithm 1 line 13) then
a victim block is chosen to be replaced with the new
one (Algorithm 1 line 14). GHRP first tries to find a
predicted dead block by reading the prediction bit of
each block: block.dead. If no block was predicted as
dead then GHRP evicts the LRU block. The details
of victim block selection is shown in Algorithm 5.

Algorithm 5 Returns a predicted dead block if there
is one, otherwise returns the LRU block

function victimBlock(Set set)
for int i = 1 to associativity do
block← set.blocks[i]
if block.isDead = true then return block

return LRUblock()

As soon as one block is chosen to be evicted,
the prediction tables need to be updated by the
new information about this eviction. First, the sig-
nature bits of the victim block are used to index the
prediction tables and each corresponding counter is
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Fig. 3. MPKI comparison of various policies for a 8-way 64KB I-cache with 64B cache lines. The horizontal axis shows the
benchmarks in the order of sorted MPKI for LRU. Multiple areas of the graph are shown in zoomed windows for different ranges
of MPKI.
increased by one since the block was just shown to
be dead (Algorithm 6).

Algorithm 6 Index prediction tables and update
counters

procedure updatePredTables(int[] indices,
bool isDead, )

for t = 1 to numPredTables do
if isDead = true then

predTables[ indices[t], [t]]++
else

predTables[ indices[t], [t]]−−

After replacing the new block, the corresponding
metadata for that block is updated (Algorithm 1
lines 20, 28 and 19). The dead block prediction
for the signature made based on the current PC is
obtained (Algorithm 1 line 18) and the prediction bit
is updated (Algorithm 1 line 19). Algorithm 1 lines 15
to 18 summarizes the steps taken for eviction. Note
that GHRP does not update the predictor table for
the new signature related to current access. Rather,
it updates the signature bits of the corresponding
block which will be used in the future accesses.
In the case of a hit access (Algorithm 1 line 21)

first, the prediction tables will be indexed based on
the old signature in the block (Algorithm 1 line 23)
and the corresponding counters will be decreased by
one to make sure this block will be predicted as live
under the same conditions in the future (Algorithm 1
lines 25 and Algorithm 6). Then the old signature
is replaced with the new one and the prediction bit
is replaced with the prediction obtained from the
prediction table.

E. Adapting GHRP for BTB Replacement

The BTB is another cache-like structure that
relies on a replacement policy to do a good job of pro-
viding branch targets. We use the GHRP algorithm
to enable improved replacement of BTB entries as
well as I-cache block replacement. Every BTB access
comes from a branch that occupies some I-cache
block. When a BTB access is made, the metadata
corresponding to that branch’s block in the I-cache
is used to make a GHRP prediction. That is, the
signature recorded for that I-cache block is used to
index the I-cache GHRP prediction tables to generate
three predictions that are thresholded and majority-
voted to yield a dead-entry prediction for that BTB
entry. Each BTB entry maintains one additional bit
of metadata: a prediction bit that records whether
that BTB entry is predicted as dead. The history
register is also shared and is only updated with
branch PCs using the same formula. All of the
other structures for the GHRP algorithm are already
present for use by the I-cache dead block prediction,
so BTB replacement comes with almost no additional
overhead. As in the I-cache, BTB replacement and
bypass are guided by GHRP. A predicted dead block
will be evicted, or if there is no such block, the LRU
block will be evicted.
We first modeled GHRP as a stand-alone replace-

ment policy with its own metadata, but realized that
the size of the predictor would be so large that it
would make more sense to simply increase the BTB
size. However, we noticed that the prediction tables
and metadata from the I-cache did just as well for the
BTB. This result is somewhat counterintuitive; as
cache blocks may have multiple branches, we would
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make the same prediction for each BTB entry in a
cache block. However, the algorithm still provides
good BTB replacement for the following reasons:
1) Most branches are highly biased to be taken or
not taken. A branch that is never taken will
not get a BTB entry, so it will never need to
replace another entry or be replaced. A branch
that is seldom taken will have its BTB entry
quickly reach the LRU position, and when it is
occasionally taken the BTB miss will not have
a large impact on MPKI.

2) On the other hand, a branch that is always
or often taken will cut off fetching to other
branches in the same cache block, so those
branches will seldom or never need BTB en-
tries.

3) Due to modulo indexing of the BTB, branches
in the same cache block will map to distinct
BTB sets. Figure 5 illustrates a BTB heat
map for the various policies similar to the one
shown in Figure 1. One noticeable feature of
this image is that the different sets experience
different levels of access, i.e. there are hot and
cold sets. If a cache block is mostly live, the
corresponding BTB entries will be predicted as
live. This will protect vulnerable BTB entries
in hot sets and not matter for BTB entries in
cold sets.

4) It is possible that a dead BTB entry will
be falsely predicted as live, but this sort of
misprediction only reduces the opportunity to
evict that block, rather than the other kind of
misprediction that falsely predicts a live block
as dead and can lead to a miss. By tuning the
threshold for BTB predictions separately from
I-cache predictions, we find a balance that min-
imizes false dead predictions while allowing the
best coverage for the replacement optimization.

F. Impact of Misspeculation on Training
To prevent wrong-path information from pollut-

ing the prediction tables, GHRP only updates the
tables of counters at commit time with right-path
branches, a practice consistent with branch predictor
implementation [71], [72]. GHRP uses path history
to make predictions. The history used to predict
the current I-cache or BTB access must be current,
so GHRP uses the stream of fetch addresses from
the branch predictor to update its history specu-
latively. For recovery from mispredictions, GHRP

borrows a technique from branch prediction spec-
ulative history management [72]. GHRP maintains
two path histories: the speculative history updated
using the outcome of the branch predictor, and a non-
speculative history updated when a branch is retired
from the reorder buffer (ROB). On a misprediction,
the speculatively history is restored from the non-
speculative one. To support speculation on a modern
processor, the I-cache and BTB may be updated
according to wrong-path cache accesses and targets.
Thus, GHRP updates its prediction tables based on
the speculative history so that its predictions reflect
the liveness of actual accesses to the BTB and I-
cache.

G. Integrating GHRP into a Modern Decoupled
Front-End
Modern processors use decoupled front-ends to

fill an instruction queue. To ensure efficient instruc-
tion delivery, a new component must not introduce
extra latency into the critical path for dequeuing
instructions. Fortunately, none of GHRP’s operations
are on the critical path. Predictions are used to
drive BTB and I-cache replacement, and can occur
simultaneously with target computation and reading
the L2, respectively. The speculative path history is
updated simultaneously with branch predictor histo-
ries which, in a modern processor, are far deeper than
the simple history used by GHRP. Using 8T SRAM
cells for the prediction tables would allow updates
to be made simultaneously with prediction. More
area-friendly 6T cells would require some queuing
of updates, but since the counters tend to saturate
quickly most accesses would not require training.

Fig. 5. Heat map showing the efficiency of a 256-entry, 8-
way BTB using five replacement policies for a given industrial
trace. The darker the pixel, the block remains unevicted while
dead. GHRP improves live time over the other policies.
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Fig. 6. MPKI for a 64KB 8-way I-cache with 64B cache lines for various policies over benchmarks. The last group of bars
shows the average among the benchmarks illustrated.

IV. Methodology

A. Simulation Infrastructure
We use the simulator and traces released for the

recent Championship Branch Prediction competi-
tion(CBP5) [25]. As it is intended for branch predic-
tion studies, we augment it with additional code to
study the I-cache and BTB. We use a hashed percep-
tron predictor as the branch direction predictor [51].
Perceptron-based branch predictors are used in high-
performance ARM processors from Samsung [55] as
well as processors from AMD and Oracle [56], [57].
The original traces contain one record for every

branch, including conditional, unconditional, indi-
rect, and returns. From these traces we reconstruct
the block address of every instruction fetch group
by inferring the missing instructions between branch
targets. The simulator is not cycle accurate, so we use
misses per 1000 instructions (MPKI) as our figure
of merit. For a given benchmark, MPKI is roughly
proportional to cycles per instruction (CPI). Arith-
metic mean MPKI gives a good overall indication of
the relative benefits of I-cache and BTB replacement
policies.
We measure performance of the I-cache and

BTB using LRU replacement as the baseline. We
study static re-reference interval prediction (SRRIP),
sampling-based dead block prediction (SDBP) and
global history reuse prediction (GHRP) for different
configuration parameters such as associativity, block
size and cache size. We characterize the workloads as
described in the following section.
For this study, we use a modified version of SDBP.

The following modifications are applied to achieve
the best possible results for I-cache and BTB based
on SDBP design: 1) The sampler is as large as
the cache, i.e. it has the same number of sets and
same associativity. 2) Tuned dead block threshold to
decrease number of false positives. 3) Tuned bypass

threshold to avoid costly incorrect dead predictions.
The original SDBP work used 2-bit counters, but
in the context of I-cache and BTB we find the
best performance comes with 8-bit counters. This
is mainly to cover high bypass value which was
required to get better accuracy. Our SDBP uses three
skewed prediction table to reduce the possibility of
miss prediction due to conflicts. Each entry in the
sampler consist of 1 valid bit, 1 prediction bit, 3 bits
to maintain LRU positions, 12 bits as partial PC
(signature), and 16 bits of tag. Taking these steps
adapts SDBP to work well with instruction streams
as explained in Section II-A.
GHRP also keeps metadata for each I-cache block

and BTB entry. GHRP also uses three skewed pre-
diction tables. Each of the 4,096 entries in the tables
contains a two-bit counter. The additional metadata
for each block consists of 1 prediction bit, 3 bits to
maintain LRU positions, and 16 bits of signature. Ta-
ble I summarizes the storage requirements for GHRP
for a 64KB I-cache with 8-way associativity. The
modified SDBP requires considerably more storage
due to the wider prediction tables.

B. Workloads
We use the set of 662 traces provided as a part

of CBP5. The distribution of benchmarks is a mixed
set of SHORT-MOBILE, LONG-MOBILE, SHORT-
SERVER, and LONG-SERVER workloads. Short
traces are simulated completely, while long traces are
allowed to run for the first one billion instructions.

C. Warm-up
In each simulation, we warm the cache using the

first half of the instructions in the trace, or up to two
hundred million instructions, whichever comes first.
We stop the simulation after one billion instructions.
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Fig. 7. Average MPKI for multiple I-cache configuration with various policies.g g g

Fig. 8. Average difference-relative-to-LRU with error bars
(95% confidence interval).

V. Results

In this section we describe the results of experi-
ments simulating the GHRP policy as well as policies
adapted from previous work. We first present results
on I-cache replacement, then give results for BTB
replacement.

A. I-Cache Results
Figure 6 depicts per-benchmark results for the

various replacement policies for a 8 way 64KB I-cache
with 64B blocks. The x-axis shows the benchmarks
in order of sorted MPKI for LRU and is compared
with other policies. Since it is not possible to depict
the bar charts for all 662 benchmarks, an S-curve
is shown in Figure 3 for the 64KB I-cache on all
662 benchmarks. On average for the 662 workloads,
GHRP achieves 0.86 average MPKI, compared with
1.05 for LRU, 1.14 for Random, 1.02 for SRRIP,
and 1.10 for SDBP. GHRP improves average MPKI
by 18% over LRU, 24% over Random, 16% over

SRRIP and 22% over SDBP. For a subset of 123
benchmarks experiencing at least 1 MPKI under the
LRU policy on average, GHRP achieves 4.32 MPKI,
compared with 5.11 for LRU, 5.53 for Random, 4.50
for SRRIP, and 5.38 for SDBP. GHRP improves
average MPKI by 26% over LRU, 32% over Random,
15% over SRRIP and 20% over SDBP. GHRP is the
only policy that significantly improves MPKI over
LRU.For the vast majority of cases, GHRP provides
lower MPKI than the other policies. In only 14 out
of the 662 traces, GHRP fails to improve over LRU.
This number is 106 for SDBP, 110 for SRRIP and
541 for Random.
We focus on the 64KB I-cache as it represents a

common configuration in existing processors. How-
ever, we have also explored other configurations to
verify our approach. I-cache MPKI values averaged
over all 662 benchmarks mentioned above for multi-
ple configurations are shown in Figure 7. The figure
shows various combinations of 8KB, 16KB, 32KB
and 64KB caches with 64B blocks and 4-way or 8-
way associativity. For each configuration, the trend is
the same: Random performs poorly, SRRIP performs
better than LRU and SDBP perform better in some
benchmarks and worse than LRU in some others, and
GHRP provides significantly lower MPKI than the
other policies.
1) Statistical Analysis: Figure 8 is the average of

difference relative to LRU with error bars (95% con-
fidence interval). The relative difference for GHRP is
negative more than 95% of the times meaning that
the MPKI was lower compared to LRU, and the
average of this relative difference is -33% meaning
that on average there is a 33% reduction in MPKI
using GHRP compared to LRU. In more than 95% of
tests the relative difference is at least 31% reduction
(-31%).
Figure 9 shows that the number of traces in which

Random performed worse than LRU (541) is 5 times
more than this measurement in SDBP (106). This
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Fig. 10. BTB MPKI for a 4-way 4K-entry BTB with various policies.

Fig. 11. MPKI comparison of various policies for a 8-way 4K BTB. The horizontal axis is showing the benchmarks in the order
of sorted MPKI for LRU. Multiple areas of the graph are shown in zoomed windows for different ranges of MPKI.g

Fig. 9. For a 64K 8-way 64B-block size I-cache, this graph
shows the percentage of traces for which the given policy
performs worse than (black) or similar to (gray) or better than
(white) LRU.

difference shows that SDBP can still a benefit large
number of workloads (41% of traces) while harming

16% and performing similarly to LRU for the others
(42% of traces). On the other hand, Figure 9 shows
that the number of traces in which SRRIP performs
worse than LRU (110) is close to this measurement
for SDBP (106).
The figure also shows that GHRP is sufficient

for 98% of traces (benefits 83% of traces and be-
ing similar to LRU for 14% of traces) while only
harming 2% of traces. This observation did not in-
dicate any dependency on trace category (SHORT-
MOBILE, LONG-MOBILE, SHORT-SERVER and
LONG-SERVER).

B. Branch Target Buffer
BTB misses for the various policies are shown in

Figure 10. Since it was not possible to depict the bar
charts for all 662 benchmarks so Figure 11 shows an
S-curve for the 64KB I-cache on all 662 benchmarks.
This BTB has 4,096 entries and is modeled after the
Mongoose [55] BTB.
We find that more traces experience high MPKIs

with smaller BTBs, but to keep our research rele-
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vant to future processors we choose a modern BTB
capacity. Over these traces, the LRU policy yields
an average 4.58 MPKI. Random is worse at 4.81
MPKI, SRRIP and SDBP are slightly better at 4.17
and 4.57 MPKI, respectively. GHRP has the lowest
average MPKI at 3.21, a 30.0% improvement over
LRU, 33.3% over Random, 23.1% over SRRIP and
29.1% over SDBP.

VI. Conclusions and Future Work

This paper has demonstrated that predictive re-
placement policies can significantly reduce I-cache
and BTB misses over a large suite of industrial
traces. Previous replacement policies adapted from
data cache replacement policies have potential, but
a policy specifically designed for instruction streams
has greater benefits. We introduce Global History
Reuse Prediction, a dead block/entry predictor de-
signed for instruction streams. In future work we
will explore how our techniques interact with high-
performance indirect branch prediction.
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